• Title/Summary/Keyword: Instability Wave

Search Result 254, Processing Time 0.12 seconds

A Study of Combustion Instability Mode according to the Variation of Combustor Length in Dual Swirl Gas Turbine Model Combustor (연소실 길이에 따른 이중선회 가스터빈 모델 연소기에서 연소불안정 모드 연구)

  • Jang, Munseok;Lee, Keeman
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.2
    • /
    • pp.29-37
    • /
    • 2016
  • This study described the experimental investigations of combustion instability in a model gas turbine combustor. Strong coupling between pressure oscillations and unsteady heat release excites a self-sustained acoustic wave, which results in a loud and annoyed sound, and may also lead to a structural damage to the combustion system. In this study, in order to examine the combustion instability phenomenon of a dual swirling combustor configuration, the information of heat release and pressure fluctuation period with respect to the variation in both thermal power and combustor length was collected experimentally. As a result, the fundamental acoustic frequency turned out to increase with the increasing thermal power without respect to the combustor length. The frequency response to the combustor length was found to have two distinct regimes. In a higher power regime the frequency significantly decreases with the combustor length, as it is expected from the resonance of gas column. However, in a lower power regime it is almost insensitive to the combustor length. This insensitive response might be a result of the beating phenomenon between the interacting pilot and main flames with different periods.

A Numerical Study on Air-Assisted Breakup of Fuel Droplets (연료액적의 Air-Assisted Breakup에 대한 수치해석적 연구)

  • Hwang, S.S.
    • Journal of ILASS-Korea
    • /
    • v.1 no.2
    • /
    • pp.57-65
    • /
    • 1996
  • Breakup models are evaluated using the experimental drop trajectory ill this study. The experimental conditions corespond to Weber # 56, 260, 463. Computations are carried out using a modified KIVA-II program with 2 different breakup submodel(TAB and Wave breakup model) and dynamic drag model which the drag coefficient changes dynamically with distortion parameter. Results show that computation with wave breakup model represents the experimental drop trajectory better than that with TAB submodel. And result with wave breakup model shows similar breakup pattern to experimental breakup process. It is thought that in wave breakup model the small drops are shed from the parent drop throughout parcel lifetime such thai this modelling represents the real breakup process well.

  • PDF

THE DELTA STANDING WAVE SOLUTION FOR THE LINEAR SCALAR CONSERVATION LAW WITH DISCONTINUOUS COEFFICIENTS USING A SELF-SIMILAR VISCOUS REGULARIZATION

  • LI, XIUMEI;SHEN, CHUN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1945-1962
    • /
    • 2015
  • This paper is mainly concerned with the formation of delta standing wave for the scalar conservation law with a linear flux function involving discontinuous coefficients by using the self-similar viscosity vanishing method. More precisely, we use the self-similar viscosity to smooth out the discontinuous coefficient such that the existence of approximate viscous solutions to the delta standing wave for the Riemann problem is established and then the convergence to the delta standing wave solution is also obtained when the viscosity parameter tends to zero. In addition, the Riemann problem is also solved with the standard method and the instability of Riemann solutions with respect to the specific small perturbation of initial data is pointed out in some particular situations.

PIC simulation study of the turbulence of the Alfven ion-cyclotron waves induced by electromagnetic ion-cyclotron instability

  • Kaang, Helen H.;Ryu, Chang-Mo;Mok, Chinook;Rha, Ki-Cheol
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.29.3-29.3
    • /
    • 2011
  • The turbulence in the nonlinear regime of the electromagnetic ion-cyclotron (EMIC) instability are investigated via a particle-in-cell (PIC) simulation. EMIC instability arises from anisotropic ion temperature and excites the Alfven ion-cyclotron (AIC) waves. The excited AIC waves undergo inverse-cascade via the nonlinear wave interaction of two AIC and one ion density modes. Induced ion density modes are the normal and second harmonic ion-acoustic (IA) waves. They have the same group velocity, but the second harmonic IA mode only generates the longitudinal electric field.

  • PDF

Effect of Chaos and Instability of Brillouin-Active Fiber Based on Optical Communication Networks

  • Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.4
    • /
    • pp.272-277
    • /
    • 2013
  • In this paper the effect of instability and chaos in optical fiber networks based on the Internet is described. Nonlinear optical fiber effect especially Brillouin scattering in networks has emerged as the essential means for the construction of active optical devices used for all-optic in-line switching, channel selection, amplification, oscillation in optical communications and a host of other applications. The inherent optical feedback by the back-scattered Stokes wave in optical networks also leads to instabilities in the form of optical chaos. This paradigm of optical chaos in fiber Internet serves as a test for fundamental study of chaos and its suppression and exploitation in practical application in optical fiber communication. This paper attempts to present a survey and some of our research findings on the nature of Brillouin chaotic effect on Internet based optical communication.

Effect of Chaos and Instability of Brillouin-Active Fiber Based on Optical Communication

  • Yeom, Keong-Tae;Kim, Kwan-Kyu;Kim, Ji-Hyoung;Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.1
    • /
    • pp.61-66
    • /
    • 2008
  • In this paper the effect of instability and chaos in optical fiber networks based on the Internet is described. Nonlinear optical fiber effect especially Brillouin scattering in networks has emerged as the essential means for the construction of active optical devices used for all-optic in-line switching, channel selection, amplification, oscillation in optical communications and a host of other applications. The inherent optical feedback by the back-scattered Stokes wave in optical networks also leads to instabilities in the form of optical chaos. This paradigm of optical chaos in fiber Internet serves as a test for fundamental study of chaos and its suppression and exploitation in practical application in optical fiber communication. This paper attempts to present a survey and some of our research findings on the nature of Brillouin chaotic effect on Internet based optical communication.

  • PDF

Numerical Study on the Shock Wave Scattering Phenomenon Behind a Finite Wedge (유한 쐐기에 의한 충격파 산란 현상의 수치적 연구)

  • Chang Se-Myong;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.79-84
    • /
    • 1999
  • The shock wave diffracted behind a finite wedge is partially scattered after interacting with a starting vortex originated from the sharp vertex of the wedge. The shock is divided into the accelerated and decelerated shocks. The decelerated shock then interacts with the small vortexlets brought about by the vortex instability, producing weak compression waves. The shock-shock interaction produces Mach stems. Through this successive process, the shock attenuated. In this study, these complicated shock phenomena are computed using Euler equations and compared with experimental results obtained by the authors.

  • PDF

A Study on Producing Electron Beam For the lustallation of Future Energy (차세대 에너지 이용을 위한 전자빔 발생장치에 관한 연구)

  • Kim, Won-Sop
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.374-377
    • /
    • 2004
  • We present a detailed design study of high power large diameter backward wave oscillator operating at 24 GHz for a beam energy of 100 keV. The ratio of the mean diameter of the slow wave structure to the wavelength of output microwaves is increased to be 4.8. Analysis is made within the scope of linear theory of absolute instability.

  • PDF

Laboratory study on the modulation evolution of nonlinear wave trains

  • Dong, G.H.;Ma, Y.X.;Zhang, W.;Ma, X.Z.
    • Ocean Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.189-203
    • /
    • 2012
  • New experiments focusing on the evolution characteristics of nonlinear wave trains were conducted in a large wave flume. A series of wave trains with added sidebands, varying initial steepness, perturbed amplitudes and frequencies, were physically generated in a long wave flume. The experimental results show that the increasing wave steepness, increases the speed of sidebands growth. To study the frequency and phase modulation, the Morlet wavelet transform is adopted to extract the instantaneous frequency of wave trains and the phase functions of each wave component. From the instantaneous frequency, there are local frequency downshifts, even an effective frequency downshift was not observed. The frequency modulation increases with an increase in amplitude modulation, and abrupt changes of instantaneous frequencies occur at the peak modulation. The wrapped phase functions show that in the early stage of the modulation, the phase of the upper sideband first diverges from that of the carrier waves. However, at the later stage, the discrepancy phase from the carrier wave transformed to the lower sideband. The phase deviations appear in the front of the envelope's peaks. Furthermore, the evolution of the instantaneous frequency exhibits an approximate recurrence-type for the experiment with large imposed sidebands, even when the corresponding recurrence is not observed in the Fourier spectrum.

A study of solitary wave trains generated by an injection of a blob into plasmas

  • Choe, Jeong-Rim;DokGo, Gyeong-Hwan;Choe, Eun-Jin;Min, Gyeong-Uk;Lee, Eun-Sang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.93.1-93.1
    • /
    • 2012
  • In this study, we investigated the generation of consecutive electrostatic solitary waves (ESWs) using by one-dimensional electrostatic particle-in-cell (PIC) simulation. For a given Gaussian perturbation, it is found that electron two-stream instability occurs in local grids region. Thus because of this instability, the electrostatic potential grows rapidly so as to be separated into electron and ion in perturbation region, and then electrons are trapped with heating during growing instability. It is found that these heated and trapped electrons are caused the generation of ESW, and ions are reflected backward and forward at the boundary of the initial perturbation, then form cold ion beam whereas electrons are confined to inside of the potential. Furthermore backward reflected ion beam forms ion holes by ion two-stream instability. On the other hand, as the confined electrons are released, and then released electrons also form hot electron beam, which play an important role in the generation of consecutive ESWs such as broadband electrostatic noise (BEN) observed frequently in space environment. Therefore the reason of the generation of consecutive ESWs is the existence of heated electrons which can sufficiently support energy to produce ESWs.

  • PDF