• Title/Summary/Keyword: Inspection work

Search Result 690, Processing Time 0.023 seconds

A Study on 3D Model Building of Drones-Based Urban Digital Twin (드론기반 도심지 디지털트윈 3차원 모형 구축에 관한 연구)

  • Lim, Seong-Ha;Choi, Kyu-Myeong;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.163-180
    • /
    • 2020
  • In this study, to build a spatial information infrastructure, which is a component of a smart city, a 3D digital twin model in the downtown area was built based on the latest spatial information acquisition technology, the drone. Several analysis models were implemented by utilizing. While the data processing time and quality of the three types of drone photogrammetry software are different, the accuracy of the construction model is ± 0.04 in the N direction and ± 0.03m in the E direction. In the m and Z directions, ± 0.02m was found to be less than 0.1m, which is defined as the allowable range of surveying performance and inspection performance for the boundary point in the area where the registration of the boundary point registration is executed. 1: 500 to 1 of the aerial survey work regulation: The standard deviation, which is the error limit of the photographic reference point of the 600 scale, appeared within 0.14 cm, and it was found that the error limit of the large scale specified in the cadastral and aerial survey was satisfied. In addition, in order to increase the usability of smart city realization using a drone-based 3D urban digital twin model, the model built in this study was used to implement Prospect right analysis, landscape analysis, Right of light analysis, patrol route analysis, and fire suppression simulation training. Compared to the existing aerial photographic survey method, it was judged that the accuracy of the naked eye reading point is more accurate (about 10cm) than the existing aerial photographic survey, and it is possible to reduce the construction cost compared to the existing aerial photographic survey at a construction area of about 30㎢ or less.

Analysis on the actual condition of consciousness for related regulations with revised Water Leisure Safety Regulation (수상레저안전법의 개정에 따른 관련규제에 관한 의식실태분석)

  • Kim Jun-Hoon;Gug Seung-Gi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.189-194
    • /
    • 2005
  • The interest of people is rising on water leisure and the population of water sports is increasing with expanded nationwide roads and 5-day work system for income elevation. However, there are many discussions about the way to prevent the accident related to water leisure activities. Water Leisure Safety Regulation was enacted in 1999 as a part of the way and revised in 2005. Therefore it needs to grasp the present state of water leisure activities and analyze the actual condition of consciousness. For the analysis. the question survey was conducted on water leisurers in the focus with regulation of the revised so that the degree of relevance and correlation between mutual variables were analyzed by Frequency and Crosstabs. From this study we found that more than $60\%$ of water leisurers thought registration, safety instruction, insurance, and safety inspection necessary and there was a characteristic common inclination to all for necessity to impose legal controls on water leisure activities as the level of dissatisfaction for water leisure apparatus and cognition for necessity of insurance was high.

  • PDF

A study on Fire Case and Countermeasure of Tourist Hotel (관광호텔의 화재손해 위험관리방안 - 화재발생현황과 대형화재사례 분석 중심)

  • Han, Sukman;Son, Jung Hyoun;Kim, Jong Won
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.4
    • /
    • pp.362-375
    • /
    • 2012
  • Tourist hotels are equipped with facilities such as accommodation and restaurants, exercise, recreation. Unspecified guests, visitors and management of tourist hotels are very vulnerable on the casualties and property losses due to fire peril exist. In this study, we analysis that the fire statistics status of tourist hotels from 2001 to 2010. And the 15 cases of a large hotel fire are reviewed. The total number of fires on hotel are consist of a hotel rooms fire(33.2%), a restaurant kitchen fire(11.8%). And the major causes of the fire are an electrical fire (40.8%), a cigarette fire (14.5%) and a hot-work fire (9.2%). In case study, the fire wall defect and combustible materials are major fire loss causes for 10year. Each tourist hotels are needed a development of suitable fire risk management and a field operations. A hotel is required an active fire risk management on a preventive inspection, an education and training, and a preventive maintenance. It is necessary that a fire wall maintenance to prevent of the spread of a fire and a sprinkler installation of whole area to protect fire. And it is very important an emergency response for evacuation of guest, and operate emergency procedures on a fire or emergency situation.

Automatic Selection of Optimal Parameter for Baseline Correction using Asymmetrically Reweighted Penalized Least Squares (Asymmetrically Reweighted Penalized Least Squares을 이용한 기준선 보정에서 최적 매개변수 자동 선택 방법)

  • Park, Aaron;Baek, Sung-June;Park, Jun-Qyu;Seo, Yu-Gyung;Won, Yonggwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.124-131
    • /
    • 2016
  • Baseline correction is very important due to influence on performance of spectral analysis in application of spectroscopy. Baseline is often estimated by parameter selection using visual inspection on analyte spectrum. It is a highly subjective procedure and can be tedious work especially with a large number of data. For these reasons, it is an objective and automatic procedure is necessary to select optimal parameter value for baseline correction. Asymmetrically reweighted penalized least squares (arPLS) based on penalized least squares was proposed for baseline correction in our previous study. The method uses a new weighting scheme based on the generalized logistic function. In this study, we present an automatic selection of optimal parameter for baseline correction using arPLS. The method computes fitness and smoothness values of fitted baseline within available range of parameters and then selects optimal parameter when the sum of normalized fitness and smoothness gets minimum. According to the experimental results using simulated data with varying baselines, sloping, curved and doubly curved baseline, and real Raman spectra, we confirmed that the proposed method can be effectively applied to optimal parameter selection for baseline correction using arPLS.

Analysis on the post-irradiation examination of the HANARO miniplate-1 irradiation test for kijang research reactor

  • Park, Jong Man;Tahk, Young Wook;Jeong, Yong Jin;Lee, Kyu Hong;Kim, Heemoon;Jung, Yang Hong;Yoo, Boung-Ok;Jin, Young Gwan;Seo, Chul Gyo;Yang, Seong Woo;Kim, Hyun Jung;Yim, Jeong Sik;Kim, Yeon Soo;Ye, Bei;Hofman, Gerard L.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1044-1062
    • /
    • 2017
  • The construction project of the Kijang research reactor (KJRR), which is the second research reactor in Korea, has been launched. The KJRR was designed to use, for the first time, U-Mo fuel. Plate-type U-7 wt.% Mo/Al-5 wt.% Si, referred to as U-7Mo/Ale5Si, dispersion fuel with a uranium loading of $8.0gU/cm^3$, was selected to achieve higher fuel efficiency and performance than are possible when using $U_3Si_2/Al$ dispersion fuel. To qualify the U-Mo fuel in terms of plate geometry, the first miniplates [HANARO Miniplate (HAMP-1)], containing U-7Mo/Al-5Si dispersion fuel ($8gU/cm^3$), were fabricated at the Korea Atomic Energy Research Institute and recently irradiated at HANARO. The PIE (Post-irradiation Examination) results of the HAMP-1 irradiation test were analyzed in depth in order to verify the safe in-pile performance of the U-7Mo/Al-5Si dispersion fuel under the KJRR irradiation conditions. Nondestructive analyses included visual inspection, gamma spectrometric mapping, and two-dimensional measurements of the plate thickness and oxide thickness. Destructive PIE work was also carried out, focusing on characterization of the microstructural behavior using optical microscopy and scanning electron microscopy. Electron probe microanalysis was also used to measure the elemental concentrations in the interaction layer formed between the U-Mo kernels and the matrix. A blistering threshold test and a bending test were performed on the irradiated HAMP-1 miniplates that were saved from the destructive tests. Swelling evaluation of the U-Mo fuel was also conducted using two methods: plate thickness measurement and meat thickness measurement.

Case of assembly process review and improvement for mega-diameter slurry shield TBM through the launching area (발진부지를 이용한 초대구경 이수식 쉴드TBM 조립공정 검토 및 개선 사례)

  • Park, Jinsoo;Jun, Samsu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.637-658
    • /
    • 2022
  • TBM tunnel is simple with the iterative process of excavating the ground, building a segment ring-build, and backfilling. Drill & Blast, a conventional tunnel construction method, is more complicated than the TBM tunnel and has some restrictions because it repeats the inspection, drilling, charging, blasting, ventilation, muck treatment, and installation of support materials. However, the preparation work for excavation requires time and cost based on a very detailed plan compared to Drill & Blasting, which reinforces the ground and forms a tunnel after the formation of tunnel portal. This is because the TBM equipment for excavating the target ground determines the success or failure of the construction. If the TBM, an expensive order-made equipment, is incorrectly configured at the assembly stage, it becomes difficult to excavate from the initial stage as well as the main excavation stage. When the assembled shield TBM equipment is dismantled again, and a situation of re-assembly occurs, it is difficult throughout the construction period due to economic loss as well as time. Therefore, in this study, the layout and plan of the site and the assembly process for each major part of the TBM equipment were reviewed for the assembly of slurry shield TBM to construct the largest diameter road tunnel in domestic passing through the Han River and minimized interference with other processes and the efficiency of cutter head assembly and transport were analyzed and improved to suit the site conditions.

Decision function for optimal smoothing parameter of asymmetrically reweighted penalized least squares (Asymetrically reweighted penalized least squares에서 최적의 평활화 매개변수를 위한 결정함수)

  • Park, Aa-Ron;Park, Jun-Kyu;Ko, Dae-Young;Kim, Sun-Geum;Baek, Sung-June
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.500-506
    • /
    • 2019
  • In this study, we present a decision function of optimal smoothing parameter for baseline correction using Asymmetrically reweighted penalized least squares (arPLS). Baseline correction is very important due to influence on performance of spectral analysis in application of spectroscopy. Baseline is often estimated by parameter selection using visual inspection on analyte spectrum. It is a highly subjective procedure and can be tedious work especially with a large number of data. For these reasons, an objective procedure is necessary to determine optimal parameter value for baseline correction. The proposed function is defined by modeling the median value of possible parameter range as the length and order of the background signal. The median value increases as the length of the signal increases and decreases as the degree of the signal increases. The simulated data produced a total of 112 signals combined for the 7 lengths of the signal, adding analytic signals and linear and quadratic, cubic and 4th order curve baseline respectively. According to the experimental results using simulated data with linear, quadratic, cubic and 4th order curved baseline, and real Raman spectra, we confirmed that the proposed function can be effectively applied to optimal parameter selection for baseline correction using arPLS.

The Development of XML Message for Status Tracking the Importing Agrifoods During Transport by UBL (UBL 기반 수입농수산물 운송 중 상태 모니터링을 위한 XML 메시지 개발)

  • Ahn, Kyeong Rim;Ryu, Heeyoung;Lee, Hochoon;Park, Chankwon
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.3
    • /
    • pp.159-171
    • /
    • 2018
  • The imported foods, which are imported and sold domestically, are on the rise every year, and the scale is expected to be larger, including processing the imported raw materials. However, the origin of raw materials is indicated when declaring cargo for finished products of agricultural products, but the standardization of inspection information management system for raw materials is insufficient. In addition, there is a growing concern about the presence of residual pesticides or radioactivity in raw materials or products, and customer want to know production history information when purchasing agrifoods. It manages the hazard analysis of imported agricultural products, but most of them are global issues such as microorganisms, residual pesticides, food additives, and allergy components, etc. Therefore, it is necessary to share among the logistics entities in the entire transportation process the related data. Additionally, to do this, it needs to design an architecture and standardize business model. In this paper, it defines the architecture and the work-flow that occurs between the business process for collecting, processing, and processing information for tracking the status of imported agricultural products by steps, and develops XML message with UBL and the extracted conceptual information model. It will be easy to exchange and share information among the logistics entities through the defined standard model and it will be possible to establish visibility, reliability, safety, and freshness system for transportation of agricultural products requiring real-time management.

D4AR - A 4-DIMENSIONAL AUGMENTED REALITY - MODEL FOR AUTOMATION AND VISUALIZATION OF CONSTRUCTION PROGRESS MONITORING

  • Mani Golparvar-Fard;Feniosky Pena-Mora
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.30-31
    • /
    • 2009
  • Early detection of schedule delay in field construction activities is vital to project management. It provides the opportunity to initiate remedial actions and increases the chance of controlling such overruns or minimizing their impacts. This entails project managers to design, implement, and maintain a systematic approach for progress monitoring to promptly identify, process and communicate discrepancies between actual and as-planned performances as early as possible. Despite importance, systematic implementation of progress monitoring is challenging: (1) Current progress monitoring is time-consuming as it needs extensive as-planned and as-built data collection; (2) The excessive amount of work required to be performed may cause human-errors and reduce the quality of manually collected data and since only an approximate visual inspection is usually performed, makes the collected data subjective; (3) Existing methods of progress monitoring are also non-systematic and may also create a time-lag between the time progress is reported and the time progress is actually accomplished; (4) Progress reports are visually complex, and do not reflect spatial aspects of construction; and (5) Current reporting methods increase the time required to describe and explain progress in coordination meetings and in turn could delay the decision making process. In summary, with current methods, it may be not be easy to understand the progress situation clearly and quickly. To overcome such inefficiencies, this research focuses on exploring application of unsorted daily progress photograph logs - available on any construction site - as well as IFC-based 4D models for progress monitoring. Our approach is based on computing, from the images themselves, the photographer's locations and orientations, along with a sparse 3D geometric representation of the as-built scene using daily progress photographs and superimposition of the reconstructed scene over the as-planned 4D model. Within such an environment, progress photographs are registered in the virtual as-planned environment, allowing a large unstructured collection of daily construction images to be interactively explored. In addition, sparse reconstructed scenes superimposed over 4D models allow site images to be geo-registered with the as-planned components and consequently, a location-based image processing technique to be implemented and progress data to be extracted automatically. The result of progress comparison study between as-planned and as-built performances can subsequently be visualized in the D4AR - 4D Augmented Reality - environment using a traffic light metaphor. In such an environment, project participants would be able to: 1) use the 4D as-planned model as a baseline for progress monitoring, compare it to daily construction photographs and study workspace logistics; 2) interactively and remotely explore registered construction photographs in a 3D environment; 3) analyze registered images and quantify as-built progress; 4) measure discrepancies between as-planned and as-built performances; and 5) visually represent progress discrepancies through superimposition of 4D as-planned models over progress photographs, make control decisions and effectively communicate those with project participants. We present our preliminary results on two ongoing construction projects and discuss implementation, perceived benefits and future potential enhancement of this new technology in construction, in all fronts of automatic data collection, processing and communication.

  • PDF

Evaluating Essential Aspects of Novel Architectural Products: An In-depth Application of Importance-Performance Analysis (중요도-성취도 분석을 통한 건축 신제품의 요구사항 분석 연구)

  • Lee, Ung-Kyun;Kim, Jae-Yeob
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.305-313
    • /
    • 2023
  • With an increasing interest in the commercialization of research results in the present societal climate, especially in the construction industry, preliminary product analysis plays a critical role when introducing a new product to the market. It significantly influences the product's success or failure. In this context, this study aims to investigate the utility of Importance-Performance Analysis (IPA) as a management strategy tool for preliminary analysis in the commercialization of new architectural technologies. The study specifically assesses a smart ball product engineered for pipeline inspection. The evaluation is carried out based on product quality, convenience, and usability categories. Seventeen factors are recognized as sub-items, and a survey is conducted among relevant experts and consumer groups. From the survey, four key items are chosen: "Keep up the good work," "Concentrate here," "Low priority," and "Possible overkill." Suitable strategic measures are derived for each item. By conducting a correlation analysis between product importance and performance, this study offers a method to establish priority directions for future development. This analysis assists in identifying areas that necessitate improvement or additional focus to increase the product's commercial potential. On the whole, this study contributes to understanding and applying Importance-Performance Analysis as a valuable tool in the preliminary analysis and commercialization of novel technologies in the field of architecture.