• Title/Summary/Keyword: Inspection Robot

Search Result 225, Processing Time 0.027 seconds

Experimental Investigation on Bi-directional Guidance Control Between an Underwater Mobile Robot and Laser Pointer (레이저 위치 지시기와 이동 로봇간의 상호유도제어의 실험적 고찰)

  • 이재철;김재희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.268-268
    • /
    • 2000
  • In the inspection of the reactor pressure vessel using an underwater mobile robot, we developed a new bi-directional guidance control scheme between an underwater mobile robot and a laser pointer. We imposed fanning to the inclinometer embedded in the mobile robot to improve its transient response, and used heuristic control scheme to reduce accidents when the laser pointer losts the mobile robot. We implemented these algorithms to our reactor vessel inspect ion system and performed a series of experiments.

  • PDF

Correction of Position Error Using Modified Hough Transformation For Inspection System with Low Precision X- Y Robot (저정밀 X-Y 로봇을 이용한 검사 시스템의 변형된 Hough 변환을 이용한 위치오차보정)

  • 최경진;이용현;박종국
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.774-781
    • /
    • 2003
  • The important factors that cause position error in X-Y robot are inertial force, frictions and spring distortion in screw or coupling. We have to estimate these factors precisely to correct position errors, Which is very difficult. In this paper, we makes systems to inspect metal stencil which is used to print solder paste on pads of SMD of PCB with low precision X-Y robot and vision system. To correct position error that is caused by low precision X-Y robot, we defines position error vector that is formed with position of objects that exist in reference and camera image. We apply MHT(Modified Hough Transformation) for the aim of determining the dominant position error vector. We modify reference image using extracted dominant position error vector and obtain reference image that is the same with camera image. Effectiveness and performance of this method are verified by simulation and experiment.

Development of 3-dimensional measuring robot cell (3차원 측정 로보트 셀 개발)

  • Park, Kang;Cho, Koung-Rae;Shin, Hyun-Oh;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1139-1143
    • /
    • 1991
  • Using industrial robots and sensors, we developed an inline car body inspection system which proposes high flexibility and sufficient accuracy. Car Body Inspection(CBI) cell consists of two industrial robots, two corresponding carriages, camera vision system, a process computer with multi-tasking ability and several LDS's. As industrial robots guarantee sufficient repeatabilities, the CBI cell adopts the concept of relative measurement instead of that of absolute measurement. By comparing the actual measured data with reference data, the dimensional errors of the corresponding points can be calculated. The length of the robot arms changes according to ambient temperature and it affects the measuring accuracy. To compensate this error, a robot arm calibration process was realized. By measuring a reference jig, the differential changes of the robot arms due to temperature fluctuation can be calculated and compensated.

  • PDF

A Study of Nuclear Power Plant Inspection Tasks Using A Mobile Robot (이동로봇을 이용한 원전 내부 감시점검에 관한 연구)

  • 김창회;서용칠;조재완;최영수;김승호
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.193-196
    • /
    • 2002
  • In this paper, we presents the remote inspection activity with a mobile robot at the calandria face areas of the PHWR (pressurized heavy water reactor) nuclear power plants during full power plant operation.. The tele-operated mobile robot has been developed for this task. A 4 wheeled mechanism with the dual reconfigurable crawler arm has been adopted for the ease access to the high radiation area of calandria face. A specially designed extendable long reach mast attached on the mobile platform and the thermal image monitoring system enable human eyes to look into the calandria face. Application of robot will keep human workers from high radiation exposure and enhance the reliability of nuclear power plants.

  • PDF

Extended Kalman Filter-based Localization with Kinematic Relationship of Underwater Structure Inspection Robots (수중 구조물 검사로봇의 기구학적 관계를 이용한 확장 칼만 필터 기반의 위치추정)

  • Heo, Young-Jin;Lee, Gi-Hyeon;Kim, Jinhyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.372-378
    • /
    • 2013
  • In this paper, we research the localization problem of the crawler-type inspection robot for underwater structure which travels an outer wall of underwater structure. Since various factors of the underwater environment affect an encoder odometer, it is hard to localize robot itself using only on-board sensors. So in this research we used a depth sensor and an IMU to compensate odometer which has extreme error in the underwater environment through using Extended Kalman Filter(EKF) which is normally used in mobile robotics. To acquire valid measurements, we implemented precision sensor modeling after assuming specific situation that robot travels underwater structure. The depth sensor acquires a vertical position of robot and compensates one of the robot pose, and IMU is used to compensate a bearing. But horizontal position of robot can't be compensated by using only on-board sensors. So we proposed a localization algorithm which makes horizontal direction error bounded by using kinematics relationship. Also we implemented computer simulations and experiments in underwater environment to verify the algorithm performance.

A Study on the Development of Mobile Robot for Inspection of Hull Surface (선체 외부 검사용 모바일 로봇 개발에 관한 연구)

  • Kim, Jin-Man;Kim, Heon-Hui;Nam, Taek-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.744-750
    • /
    • 2015
  • In this paper, development of mobile robot for the inspection of hull surface was mentioned. In the sea, it is difficult to proceed with the visual inspection of hull side and thus mobile robot for checking the status could be run with strap-on its surface. To do this, permanent magnet module to generate magnetic force between hull surface and mobile robot, and structure to minimize variance of the force under curvature circumstance were considered on the design. Based on the design, mobile robot with four NdFeB, four driving wheels and image aquisition module was applied. Load experiment to check the adhesive force, slip test during stop state and driving test to measure driving speed were executed. From the experiments 13 Kgf adhesive force was obtained and slip was not happened until 8 Kgf load on the inclined plate. Driving speed of mobile robot was measured at 0.82 m/s corresponding to 6.5 ampere. We confirmed the effectiveness of developed mobile robot by experiments to check its characteristics.

A Adaptive and Fuzzy control of Inspection robot for Underground Pipes (지하매설파이프 검사로봇의 적응퍼지 위치 제어)

  • Kim, Do-Woo;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.670-673
    • /
    • 1999
  • In this paper, we present a robust motion controller based on Adaptive-Fuzzy technique is proposed that multifunctional vehicle(MVR) for two DOF mobile robot can perform detailed inspection of physical conditions of sewage pipes as well as can effectively repair the damaged portions of the inner walls. The main difficulties in controlling this multifunctional robot vehicles lie in the fact that vehicles usually have three degrees of freedom in position and orientation in spite of having only two degrees of freedom for motion control in tracking mode. Decomposition of error between the reference posture and the current posture makes control of speed and steering possible. The Gyro compass part and Inclonometer of the robot is configured in order to realize position of robot. The proposed Adaptive-Fuzzy motion controller has two main characteristics: The one guarantees that the MVR follows the reference trajectory; the other one compensates the dynamics of the MVR. Simulation results are provided to validate the proposed controller. Experiments have been used to verify the effectiveness and robustness of the motion controller.

  • PDF