• Title/Summary/Keyword: Inspection Flow

Search Result 256, Processing Time 0.023 seconds

Numerical Studies on the Control Performance of Fiber Orientation for Nozzle with Inside Blades (타설 노즐의 내부 블레이드에 의한 섬유 방향성 제어 성능에 관한 수치 해석적 연구)

  • Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.157-163
    • /
    • 2018
  • This study is aimed at controlling the fiber orientation and improve the fiber distribution in fiber-reinforced cement composites using blades that can be placed inside the existing nozzles. To optimize the blade parameters, multi-physics finite element analysis was performed that could account for the flow of the cementitious matrix material, the movement of the entrained fibers, and the interactions with the nozzle. As a result, this study defined the blade distance, length, and position as a function of the fiber length to be used in the field. The blades with a distance from 1.2 to 2.4 times the fiber length and length from 4 to 8 times the fiber length, as well as located at below 14 times the fzfiber length from the nozzle exit maintained the fiber orientation angle less than $5^{\circ}$. In addition, the blade-type nozzle proposed in the study can be attachable and detachable to the conventional casting equipment, and thus it can provide the usability and convenience in practical applications.

A Study on the Properties of the Concrete Containing Fly-ash of Class F According to the 3 Different Mixture Design (F급 플라이애쉬의 혼입방법을 달리한 콘크리트 특성에 관한 실험적 연구)

  • Moon, Jong-Wook;Yoo, Taek-Dong;Seo, Chee-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.191-198
    • /
    • 1999
  • The purpose of this study is investigating characteristics of the concrete containing Fly-ash according to different 4 mix design, that is, the first mix design is partial replace Fly-ash of cement, second is partial replace Fly-ash of cement and fine aggregate, third is partial replace Fly-ash of fine aggregate, fourth partial replacement of fine and coarse aggregate. For this purpose, selected test variables were water-binder ratio with two levels of 45%, 50%, and Fly-ash contents with four levels 0%, 10%, 20%, 30%, As the result of this study are as follow. 1) The result of mix design of a partial replacement of cement, the slump-flow value was appeared a promotive effect of viscosity. But in case of the over with Fly-ash 10% and the other mix design was not changed slump value. 2) The unit weight of the mixing rate with Fly-ash 0% was $1.875{\sim}1.884t/m^3$, the other mix design 10% over with Fly-ash was $1.846{\sim}1.615t/m^3$, the difference was appeared less about 15% than that. 3) In design, partial replace Fly-ash of fine aggregate, this compressive strength was appeared that the concrete age after 7 days was higher than in partial replacement of cement, therefore, the default of a concrete with Fly-ash, that is the earlier compressive strength was to lessen, was improved. 4) The thermal conductivity of the all mix design was $0.447{\sim}1.144kcal/mh^{\circ}C$, this value was as good as a lightweight aggregate concrete.

  • PDF

A Study on the Coating Thickness of Surface Modified Aggregate by Using the Excess Paste Theory and Rheology Value (잉여 페이스트 이론과 레올로지 정수를 이용한 표면 개질골재의 피막두께 평가에 관한 연구)

  • Choi, Hee-Sup;Choi, Hyeong-Gil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.23-29
    • /
    • 2019
  • This study applies to the surface modification technique by coating the surface of aggregates using the modified paste such as cementitious materials in order to develop completely recycling technology of coarse aggregate. In this case, coating thickness of modified aggregate can be considered that the decision is dependent on the viscosity and tenacity of modified paste. In this study identify the flow properties of the fresh modified paste, and examined for the coating thickness of modified aggregate. As a result, it was possible to design a quantitative coating thickness of modified paste assuming that a modified paste to a Bingham Fluid and consider by excess paste theory and rheology constant (yield value). Accordingly, it is considered that the quantitative mix design of concrete using by surface modified aggregates will be possible.

Porosity and Abrasion Resistance of Concrete Coated by Surface enhanced type Water Repellent (표면강화형흡수방지재 적용 콘크리트의 기공률 및 내마모성 특성)

  • Park, Myungju;Noh, Jaeho;Lee, Byungjae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.31-36
    • /
    • 2019
  • Concrete is a material generally used to build structures and it is exposed to various environment conditions. In particular, a medium such as water lets noxious factors flow into concrete, causing a lot of damage. Therefore, different kinds of materials are being developed to increase the durability of concrete. Among such materials, silane and siloxane compound are known to have a high utilization as an absorption inhibitor. However, if aged or deteriorated reinforced concrete is treated with those compounds, they easily come off the concrete and lose their function since the basic material is weak. This study conducted an experiment to provide concrete with both an absorption-inhibiting effect and surface strengthening by using melamine-formaldehyde resins that are surface-treated with siloxane compound. In addition, a study on the porosity and surface hardness characteristics of a concrete was conducted to check the absorption-inhibiting effect and surface strengthening.

Evaluation of Flexural Behavior of Masonry Members Reinforced with Engineered Cementitious Composite (고인성 복합체로 보강한 조적부재의 휨 거동 평가)

  • Yang, Seung-Hyeon;Kim, Sun-Woong;Kim, Jae-Hwan;Kang, Suk-Pyo;Hong, Seong-Uk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.37-45
    • /
    • 2021
  • This paper is a basic study to evaluate the possibility of earthquake-resistant reinforcement by reinforcing engineered cementitious composite in masonry members. In order to examine the performance according to the fiber mixing rate of the engineered cementitious composite, a test specimen was prepared according to the formulation design, and flow ability, compressive strength, flexural strength, length change rate, and direct tensile strain were measured. In addition, non-reinforced masonry members, masonry members reinforced with engineered cementitious composite, and masonry members in which glass fibers and wire mesh were separately reinforced with engineered cementitious composites were manufactured, and flexural strength and maximum displacement were measured. All specimens reinforced with engineered cementitious composite showed more than 16 times the effect of maximal strength compared to that of no reinforcement, and as a result of examining the crack shape, the energy dissipation ability was excellent, confirming the possibility of seismic reinforcement.

Capacity of Urban Freeway Work Zones (도시 고속도로 공사구간 용량 산정)

  • Lee, Mi Ri;Kim, Do-Gyeong;Kim, Hyo-Seung;Lee, Chungwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1123-1130
    • /
    • 2013
  • This paper aims to estimate work zone base capacity by the number of lanes for urban freeway. To do this, data were collected from the field survey and the database system maintained by traffic control center, and analyzed with four different methods such as the average maximum observation flow rate, headway, regression analysis, and parameter inspection. The work zone base capacity for urban freeway is estimated based on the average maximum observation flow rate and headway method, which are more reliable methods compared to others. The average capacity is 1,650pcphpl when the design speed is 80km/h. The capacity of four lanes one-way work zones was about 1,700pcphpl, while one of 2 lanes one-way work zones was about 1,600pcphpl. The capacity reduction rates for each are 0.15 and 0.2, respectively. The smaller the number of lane is, the more base capacity is reduced. For verification of results, we estimate the capacity by simulation analysis using PARAMICS, and compare with analytical results by a statistical method. This research can be used for efficient and systemic management of work zone in the urban freeway.

Evaluation of Properties of Artificial Soil Aggregate Based on Ground Granulated Blast-Furnace Slag According to Unit Binder Content (단위결합재량에 따른 고로슬래그 기반 육성용 인공토양골재의 특성평가)

  • Mun, Ju-Hyun;Sim, Jae-Il;Yun, In-Gu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.85-92
    • /
    • 2016
  • The eight mixes and artificial soil aggregates were prepared for evaluating the practical application of lightweight foamed concrete as soil aggregates. The main parameter was unit binder content ranged between from 100 to $800kg/m^3$. In lightweight foamed concrete, flow, slurry and dried density, and compressive strength at different ages were measured. In Artificial soil aggregates crushed from lightweight foamed concrete, particle size distribution, pH, coefficient of permeability, cation exchange capacity(CEC), and ratio of carbon to nitrogen(ratio of C/N), were measured. The test results showed that flow, slurry and dried density, and compressive strength at different ages of lightweight foamed concrete increased with the increasing of unit binder content. Compressive strength at age of 28, of lightweight foamed concrete with unit binder of more than $500kg/m^3$, was more than 4 MPa. The ammonium phosphate immersion time of more than age of 3, was effective to decrease pH of artificial soil aggregates. In addition, artificial soil aggregates was evaluated as high class in terms of cation exchange capacity(CEC), while satisfied with value of ratio of carbon to nitrogen(ratio of C/N) recommended by landscape specification.

The Fundamental Study of Strength and Drying Shrinkage on Alkali-activated Slag Cement Mortar with Different Entering Point of Fine Aggregate (잔골재의 투입시점에 따른 알칼리 활성화 슬래그 모르타르의 강도와 건조수축에 대한 기초적 연구)

  • Kim, Tae-Wan;Eom, Jang-Sub;Seo, Ki-Young;Park, Hyun-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.117-125
    • /
    • 2014
  • This paper examines the fundamental properties of alkali-activated slag cement (AASC) activated by sodium hydroxide (NaOH). The water to binder (W/B) ratio was 0.4 and 0.5. And concentration of activator were 2M and 4M. Five mix design of each W/B ratios was considered. The N0 mixture was KS L 5109 method and N1~N4 were varied in different mixing time, mix step and entering points of fine aggregate. Test results clearly showed that the flow value, strength and drying shrinkage development of AASC were significantly dependent on the entering point of fine aggregate. The flow value tended to decreases with delaying entering point of fine aggregate. The compressive strength and flexural strength increases with delaying entering point. Moreover, the XRD analysis confirmed that there were sustain these results. The drying shrinkage increases with delaying entering point of fine aggregate. Futhermore, a modified mixing method incorporating all hereby experimentally derived parameters, is proposed to improvement the physical properties of AASC.

The Effect of the Replacement of Grinded Fly Ash according to Curing Temperature on Repair Mortar Based on Polymer Admixture (폴리머수지 기반 보수모르타르에서 양생온도에 따른 미분쇄된 플라이애시 치환율의 영향)

  • Sim, Jae-Il;Mun, Ju-Hyun;Yun, In-Gu;Jeon, Young-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.116-124
    • /
    • 2015
  • The objective of this study is to evaluate the effects of the replacement levels of grinded fly-ash on the repaired mortar based on a polymer. The main parameters are the curing temperature and replacement levels of grinded fly-ash. The curing temperature and the replacement levels of grinded fly-ash are varied at $40^{\circ}C$, $20^{\circ}C$ and $5^{\circ}C$, and between 0% and 35% of the total binder by weight, respectively. The flow in fresh mortar and compressive strengths according to ages, the relationship of stress-strain, elastic modulus and modulus rupture in hardened mortar, as well as scanning the electron microscopy and the X-ray diffraction of mortar, were measured, respectively. The test results showed that the flow, elastic modulus and modulus rupture are great in mortar specimens with 20~30% of the replacement levels of grinded fly-ash. In addition, compressive strengths according to ages were affected by the replacement levels of grinded fly-ash and the curing temperature indicated that the strength development ratio of mortar with 20% of the replacement levels of grinded fly-ash was greater than others. In the prediction of the compressive strength specified by the ACI 209 code, the strength development at an early and late age can be generalized by the functions of the replacement levels of grinded fly-ash and the curing temperature. In the analysis of scanning the electron microscopy and the X-ray diffraction, the number and intensity of peaks increased and the form of CSH gels on the surface of the particle of grinded fly-ash was observed.

Spalling Properties of the High Strength Concrete Containing PP Fiber Subjected to Fire Mixture Factors and Drying Condition (배합요인 및 건조상태 변화에 따른 PP섬유 혼입 고강도 콘크리트의 폭렬특성)

  • Han, Cheon-Goo;Han, Min-Cheol;Song, Yong-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.115-122
    • /
    • 2008
  • This paper is to investigate the affecting factors on spalling of the high strength concrete including W/B, air content and moisture condition as well as PP fiber contents subjected to fire. An increase with 0.05% of PP fiber resulted in a reduction of slump flow by as much as 11%. Ten percent of air contents due to excessive amounts of AE agent does not lead to variance of slump flow, regardless of PP fiber content. For the effect of the compressive strength, high strength concrete with 15, 25 and 35% of W/B gained 60 MPa~100 MPa of the compressive strength. High strength concrete with H-air had half of compressive strength of that with L-air due to large amount of air. Fire test was conducted in accordance with KS F 2257-1 for 1 hour. Spalling did not occur with all specimens containing more than 0.10% of PP fiber except those with 15% of W/B. Moreover, it is interesting to note that the specimens with more than 10% of air content and with oven dried condition, respectively, had no spalling even if the content of PP fiber is 0.05 vol.%.