• 제목/요약/키워드: Insoles

검색결과 68건 처리시간 0.017초

발 뒤축 내·외측 경사진 안창이 족부압력에 미치는 영향 (Effects of Rear-Foot Wedged Insoles on the Foot Pressure in Walking)

  • 유태범;채병기;임완수;최화순;정민근
    • 대한산업공학회지
    • /
    • 제34권1호
    • /
    • pp.90-97
    • /
    • 2008
  • Wedged insoles are frequently used to reduce the pains caused by the knee arthritis or the foot overuse syndrome. The present study analyzed the effect of wedged rear-foot insoles on the foot pressure in walking. Three medially wedged insoles with three angles (5, 8 and 15") and three laterally wedged insoles with the same angles were made, and a flat insole were prepared. Ten healthy males in twenties walked in a specified line with each insole. Center of pressure (COP), relative vertical force and maximum force on anatomical areas were analyzed from the measured foot pressure data. At heel contact, medially wedged insoles significantly increased the pressure of the medial foot side (COP moved medially by 2-5 mm and maximum pressure of 1st metatarsal head increased by 110-120% relative to the flat insole), In contrast, laterally wedged insoles significantly increased the lateral side pressure (COP moved laterally by 1-5 mm and the ratio of $2^{nd}$ metatarsal head pressure to $1^{st}$ metatarsal head increased by 0.5-2.0 relative to the flat insole). At toe off, both wedged insoles significantly increased the pressure of the medial foot side (COP moved medially by 0.5-10 mm and the ratio of $1^{st}$ metatarsal head pressure to $5^{th}$ metatarsal head increased by 2.0 relative to the flat insole). Especially, the laterally wedged insoles significantly increased the relative vertical force (6-12%) of the rear-foot more than the flat insole.

Effects of Customized 3D-printed Insoles on the Kinematics of Flat-footed Walking and Running

  • Joo, Ji-Yong;Kim, Young-Kwan
    • 한국운동역학회지
    • /
    • 제28권4호
    • /
    • pp.237-244
    • /
    • 2018
  • Objective: Flat-footed people struggle with excessive ankle joint motion during walking and running. This study aimed to investigate the effects of customized three-dimensional 3D-printed insoles on the kinematics of flat-footed people during daily activities (walking and running). Method: Fifteen subjects (height, $169.20{\pm}2.61cm$; age, $22.87{\pm}8.48years$; navicular bone height, $13.2{\pm}1.00mm$) diagnosed with flat feet in a physical examination participated in this study. Results: The customized 3D-printed insoles did not significantly affect 3D ankle joint angles under walking and running conditions. However, they shifted the trajectory of the center of pressure (COP) laterally during fast walking, which enhanced the load distribution on the foot during the stance phase. Conclusion: The customized 3D-printed insoles somewhat positively affected the pressure distribution of flat-footed people by changing the COP trajectory. Further research including comparisons with customized commercial insoles is needed.

경사진 안창이 보행시 하지관절에 미치는 영향 (The Influence of Wedged Insoles on Lower Extremity Joints during Gait)

  • 권민정;최화순;정민근;나석희
    • 대한인간공학회지
    • /
    • 제26권1호
    • /
    • pp.19-27
    • /
    • 2007
  • Despite the widespread use of laterally wedged insoles for patients with knee osteoarthritis and medially wedged insoles for controlling rearfoot pronation, an understanding of the effects of wedged insoles was limited and sometimes controversial. The objective of this study was to evaluate the effect of wedged insoles on the kinematics and kinetics of normal gait. Ten male subjects without history of lower limb disorders were recruited. Each subject performed four gait cycles under each of seven conditions; shod with 5$^{\circ}$, 8$^{\circ}$ and 15$^{\circ}$, 8$^{\circ}$ and 15$^{\circ}$ laterally wedged insoles. In order to determine statistical differences among seven conditions, the measured temporal spatial variables, angular displacements, joint moments, and ground reaction forces were compared with a one-way analysis of variance. Some significant changes induced by wedged insoles were apparent in joint moments and ground reaction forces. The medially wedged insole increased the laterally directed ground reaction force and varus moments at the ankle force and varus moments at the ankle and the knee.

밀착형 외측 쐐기 스트랩 깔창의 높이에 따라 대퇴경골각에 미치는 영향 (The Effects of Femorotibial Angle of Contact laterally Wedged Insoles With Strapping of varying elevations)

  • 이상용;박성진
    • 대한정형도수물리치료학회지
    • /
    • 제12권1호
    • /
    • pp.44-50
    • /
    • 2006
  • The purpose of this study is to assess the radiographic effects of normal person with contact laterally wedged insoles with strapping of varying elevations. Eight person who were randomized into group according to their birth dates and wedge elevation, participants wore contact laterally wedged insoles with strapping with elevation of 9, 15, 21mm. Standing radiographs were used to analyze the femorotibial angle for each subject, The result of repeated measures ANOVA's reveled that laterally wedged insoles with strapping of varying elevations produced significantly the femorotibial angle. The degree of change in femorotibial angle with the insole with strapping was effected by the tilt of the lateral wedge(P<0.05). We suggest that these results may be beneficial for manufacturing foot orthotic devices, such as wedged insoles, to control medial and later compartment forces in the knee varus-valgus deformity.

  • PDF

The Effects of Insoles for Postural Correction on Spatial-temporal Changes of Gait in Spastic Cerebral Palsy Children

  • Kim, Hee Tak;Lim, Sang Wan
    • 국제물리치료학회지
    • /
    • 제6권2호
    • /
    • pp.840-845
    • /
    • 2015
  • Improvement in functional gait is one of treatment goals in treatment of cerebral palsy children. This study intended to examine the effects of insoles for postural correction on gait in spastic cerebral palsy patients by investigating changes in gait temporal spatial parameters. As the subjects, 15 spastic bilateral cerebral palsy patients participated in this study. Temporal spatial parameters of gait were measured using GAITRite system under three gait conditions. Bare foot gait, gait in shoes, and gait in insoles for postural correction were conducted. In order to look at differences in temporal spatial parameters according to three gait conditions, repeated one way analysis of variance was conducted. As post hoc test, Bonferroni was conducted. A significant level was set at ${\alpha}=.05$. According to the result of this study, gait velocity, cadence, step length, stride length of the left lower extremity significantly changed. When the subjects put on customized insoles for postural correction, the effect was greatest. There were no significant changes in stance time, single support time, double support time, swing % of gait, and stance % of cycle. Therefore, gait with insoles for postural correction positively influenced functional gait improvement and will be able to be usefully employed for spastic cerebral palsy children as one of gait assistance devices.

보행시 보급형 키 높이 인솔의 높이와 재질이 평균 족저압에 미치는 영향 (The Effects of the Height and the Quality of the Material of Popular Heel-up Insole on the Mean Plantar Foot Pressure during Walking)

  • 이중숙;김두환;정부원;한동욱;박돈목
    • 한국운동역학회지
    • /
    • 제21권4호
    • /
    • pp.479-486
    • /
    • 2011
  • This study determined the effects of the height and the quality of the material of popular heel-up insole on mean plantar foot pressure during walking. Seven healthy college students who are studying at S university in Busan were as participants in this study. After sufficiently explaining about the research to the subjects before the experiment, mean plantar foot pressures were examined using F-Scan Pressure Measure System 5.23 for the gait with shoes inserted insole and the data were compared among the height and the quality of material of insoles. In the result, there was a difference significantly in the mean plantar foot pressure followed the height of insoles both left and right. Especially, mean plantar foot pressure in left indicated significantly lower in 3 cm and 5 cm insoles than in 0 cm and 1 cm insoles. Also mean plantar foot pressure in right showed significantly lower in 3 cm and 5 cm insoles than in 0 cm, and indicated significantly lower in 5 cm insoles than in 1 cm and 3 cm insoles. The mean plantar foot pressure followed the quality of the material of insoles were different significantly. In left, the mean plantar foot pressure of urethane poly-acetyl insole was lower significantly than urethane poly-acetyl inserted air insole, power-gel insole and jelly insole. And the mean plantar foot pressure of urethane poly-acetyl insole was lower significantly than power-gel insole and jelly insole in right. We showed that 3 cm and 5 cm insoles in the height of insoles and Urethane poly-acetyl insole in the quality of material were suitable to reduce a fatigue which is felt in plantar foot during the walking.

보행 시 변형 및 복원이 가능한 인솔에 대한 족저압력 비교 분석 (Comparative Analysis of Foot Pressure Distribution by Functional Insole to be Transformed and Restored During Walking)

  • 박승범;이경득;김대웅;유중현;김경훈
    • 한국운동역학회지
    • /
    • 제21권2호
    • /
    • pp.231-241
    • /
    • 2011
  • The purpose of this study was to analyze the distribution of foot pressure generated by active materials of a functional insole. Comfort is an important consideration while selectingfootwear and insoles. Consequently, it has an influence on injury. The development of new materials for functional insoles is considered one of the more important points for their manufacture. The method adopted in this study is as follows. First, ten healthy males were selected as subjects for the study. Each subject's foof was pre-screened podoscope(Alfoots, Korea) to check for the presence of any foot abnormalities, Two kinds of equipment were used for the study: a foot pressure device from Pedar-X, Germany, and a treadmill from Pulsefitness, UK. Next, each subject was asked to test four types of insoles(insoles of outdoor shoes, indoor shoes, walking shoes, and sports shoes) via walking trials on the treadmill at a constant speed of 4.2 km/h. The pressure distribution data(contact area, maximum force, maximum peak pressure, and maximum mean pressure) was collected using the pressure device at a sampling rate of 100 Hz. Results of the tests showed that all four types of functional insoles increased contact areas whit the foot. Further, functional insoles of walking shoes and sport shoes decreased the foot pressure. From these results, we conclude that the active materials of functional insoles of shoes can increase the contact area and provide greater comfort.

다탄성 Insole의 Workload 감소 효과에 관한 연구 (The Study on Workload Reducing Effects of Multi-Elastic Insoles)

  • 이창민;이경득;오연주;김진훈
    • 대한인간공학회지
    • /
    • 제26권2호
    • /
    • pp.157-165
    • /
    • 2007
  • The Work-Related Musculoskeletal Disorders (WMSDs) can be occurred by various factors such as repetition, forceful exertions and awkward postures. Especially, occurrences of the WMSDs on the waist and lower limb are reported in workplaces, demanded standing postures for a long time, in service and manufacturing industry. The static and standing postures without movement for a long time increase work loads to the lower limb and the waist. Accordingly, anti-fatigue mat or anti-fatigue insole is used as a preventing device of the WMSDs. However anti-fatigue mats are limited in space and movement. In this study, multi-elastic insoles are designed and shown the effects of the workload reduction for a long time under the standing work. The foot pressures and EMG (Electromyography) are measured at 0 hour and after 2 hours by 6 health students in their twenties. The 6 prototype insoles are designed with three elastic (Low, Medium and High). These insoles are compared with no insole (insole type 7) as control group. The EMG measurement was conducted to waist (erector spinae muscle), thigh (vastus lateralis muscle) and calf (gastrocnemius muscle). The foot pressure is analyzed by mean pressure value and the EMG analysis is investigated through MF (Median Frequency), MPF (Mean Power Frequency) and ZCR (Zero Crossing Rate). The results of the foot pressure show that the multi-elastic insoles had smaller foot pressure value than that of no-insole. Moreover, Insole 2 and Insole 3 have the smallest increasing rate in foot pressure. The EMG results show that the multi-elastic insoles had smaller EMG shift value than that of no-insole in 2 hour, and then shift value shows the smallest value in Insole 2. Therefore, this study presents that the multi-elastic insoles have reducing effects of the work load for a long time standing work in both side of foot pressure and EMG.

기능성 인솔과 일반 인솔의 발에 대한 접촉 면적, 최대 압력, 최대 평균압력 및 최대 힘 비교 (Comparison of the Contact Area, Maximum Pressure, Maximum Average Pressure and Maximum Force between Functional Insoles and General Insoles)

  • 이수경
    • PNF and Movement
    • /
    • 제20권3호
    • /
    • pp.431-441
    • /
    • 2022
  • Purpose: The purpose of this study was to compare the changes in the contact area, maximum pressure, maximum mean pressure, and maximum force of functional insoles and general insoles when walking. Methods: Foot pressure was measured by the ignition of functional insoles and general insoles on Company N shoes. The foot pressure was measured using a precision pressure distribution meter (Pedar - X mobile system, Novel, Germany). Each insole sensor contained 99 independent cells and was inserted between the foot and the shoe. A wireless Bluetooth-type program was used to measure the pressure detected by the measuring insoles. In order to eliminate adaptation and fatigue caused by wearing the guide during the experiment, sufficient rest was taken between each experiment, and the wearing order was randomly selected. Results: Functional insole significantly increased the forefoot and midfoot (medial, lateral) (p<0.05), while total foot, forefoot, and rearfoot peak pressure significantly decreased (p < 0.05) compared to the general insole. Conclusion: In the functional insole, a high contact area was measured inside, even in the middle of the foot, leading to a proper change in foot pressure. It was confirmed that the contact area was reduced and dispersion occurred well. In addition, it was found that the maximum pressure in the front and back of the entire foot was reduced, so the weight pressure dispersion in the functional insole was evenly distributed, and the maximum average pressure change was similar.

The Effect of Protective Socks with Functional Insoles on Plantar Foot Pressure in Diabetes Patients

  • Kim, Hyun Soo;Jung, Do Young
    • The Journal of Korean Physical Therapy
    • /
    • 제30권6호
    • /
    • pp.224-228
    • /
    • 2018
  • Purpose: The most common cause of plantar ulceration is an excessive plantar pressure in patients with peripheral neuropathy. Foot orthosis and therapeutic footwear have been used to decrease the plantar pressure and prevent the plantar ulceration in in diabetes patients. We investigated whether protective sock with functional insoles reduce plantar pressure while walking in 17 diabetes patients. Methods: An in-shoe measurement device was used to measure the peak plantar pressure while walking. Peak plantar pressure data were collected while walking under two conditions: 1) wearing diabetic sock and 2) wearing the protective sock with functional insoles. Each subject walked 3 times in 10-m corridor under three conditions, and data were collected in 3 steps in the middle of corridor with in right and left feet, respectively. Pared t-test was used to compare the peak plantar pressures in three plantar areas under these two conditions. Results: The protective sock with functional insoles significantly reduced the peak plantar pressure on the lateral rearfoot, but significantly increased the peak plantar pressure on the middle forefoot, and medial midfoot (p<0.05). However, there were not significant in medial and lateral forefoot, lateral midfoot, and medial rearfoot between diabetic sock and the protective sock conditions (p>0.05). Conclusion: The protective sock with functional insoles reduced plantar pressures in the rearfoot and supported the medial longitudinal arch. However, it is necessary to change the position of metatarsal pad in the insole design of forefoot area to prevent diabetic foot ulceration.