• Title/Summary/Keyword: Inside radius

Search Result 163, Processing Time 0.028 seconds

Optimization of an Annular Fin with Variable Pipe Inside Radius in the Heat Exchanger of Ground Source System (지열시스템의 열교환기에서 원 관 내부 반경이 변하는 환형 핀의 최적화)

  • Kang, Hyung-Suk
    • New & Renewable Energy
    • /
    • v.5 no.1
    • /
    • pp.40-46
    • /
    • 2009
  • Optimization of a rectangular profile annular fin with variable pipe inside radius is presented. This optimum procedure is based on fixed fin height and is made by using variables separation method. The optimum heat loss, corresponding optimum fin length and optimum fin efficiency are presented as a function of pipe inside radius, fin half height, inside fluid convection characteristic number and ambient convection characteristic number. One of results shows that the optimum fin length increases linearly with increase of pipe inside radius for fixed fin height and fin base radius.

  • PDF

Optimization of a Pin Fin with inside Fluid (based on Fixed Fin Volume) (내부유체를 가진 Pin Fin의 최적화 (고정된 핀 체적 기준))

  • Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.3-7
    • /
    • 2009
  • A cylindrical pin fin with inside fluid is optimized based on fixed fin volume by using the one dimensional analytic method. Heat loss from the fin and the pin fin radius for fixed fin volume is presented as a function of the fin length. Temperature variation of the fin with the variation of ambient and inside fluid convection characteristic numbers and fin base thickness is listed. The maximum heat loss at the practical fin length and corresponding optimum fin length and radius are presented as a function of fin base thickness, inside convection characteristic number, fin volume and ambient convection characteristic number. One of the results shows that the optimum pin fin shape becomes relatively fatter as the fin volume increases.

  • PDF

Suggestion of Delineators Considering Traffic Safety at Curve Sections (교통안전을 고려한 곡선부 시선유도시설물 제시에 관한 연구)

  • Kwon, Sung-Dae;Lee, Suk-Ki;Jeong, Jun-Hwa;Ha, Tae-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3D
    • /
    • pp.403-412
    • /
    • 2011
  • On a curve radius, there is speed deviation because a driver who is on the curve radius can have visual distortion. The curve radius can be more dangerous than a straight radius by many reasons. Especially, visibility paralysis of delineator that is because of night and bad weather. Can pervert the information about curve sections, it threatens safety. More over accident risk is increased by influence to travel speed. Therefore, it needs to build and control delineators for driver's visibility. Therefore, this study focus on finding the two types of delineator(the retro-reflection and inside-lighting delineator) by insight-surveying and the operating speed are compared by survey and operating speed. Finally, inside-lighting delineator will be selected in terms of safety at the curve sections. The inside-lighting delineator was more effective than the retro-reflection delineator on visibility, the necessity of reduction of speed and will reduce the hazard at curve sections. Also, the study analyzes safety is guaranteed by the slight reduction of speed when the driver enters a curve radius with inside-lighting delineator. As a result, the inside-lighting delineator can give the information about horizontal and vertical profile effectively, so it can reduce the accident risk. And it can use to improve traffic safety on curve radius.

UNVEILING THE PROPERTIES OF FLS 1718+59: A GALAXY-GALAXY GRAVITATIONAL LENS SYSTEM

  • TAAK, YOON CHAN;IM, MYUNGSHIN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.401-403
    • /
    • 2015
  • We present the results of the analysis of FLS 1718+59, a galaxy-galaxy gravitational lens system in the Spitzer First Look Survey (FLS) field. A background galaxy ($z_s=0.245$) is severely distorted by a nearby elliptical galaxy ($z_l=0.08$), via gravitational lensing. The system is analysed by several methods, including surface brightness fitting, gravitational lens modeling, and spectral energy distribution fitting. From Galfit and Ellipse we measure basic parameters of the galaxy, such as the effective radius and the average surface brightness within it. gravlens yields the total mass inside the Einstein radius ($R_{Ein}$), and MAGPHYS gives us an estimate of the stellar mass inside $R_{Ein}$. By comparing these parameters, we confirm that the lens galaxy is an elliptical galaxy on the Fundamental Plane and calculate the stellar mass fraction inside $R_{Ein}$, and discuss the results with regards to the initial mass function.

ON PARTIAL SOLUTIONS TO CONJECTURES FOR RADIUS PROBLEMS INVOLVING LEMNISCATE OF BERNOULLI

  • Gurpreet Kaur
    • Korean Journal of Mathematics
    • /
    • v.31 no.4
    • /
    • pp.433-444
    • /
    • 2023
  • Given a function f analytic in open disk centred at origin of radius unity and satisfying the condition |f(z)/g(z) - 1| < 1 for a analytic function g with certain prescribed conditions in the unit disk, radii constants R are determined for the values of Rzf'(Rz)/f(Rz) to lie inside the domain enclosed by the curve |w2 - 1| = 1 (lemniscate of Bernoulli). This, in turn, provides a partial solution to the conjectures and problems for determination of sharp bounds R for such functions f.

Unveiling the Lens Galaxy of FLS 1718+59: A Galaxy-Galaxy Gravitational Lens System

  • Taak, Yoon Chan;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.70.1-70.1
    • /
    • 2014
  • We analyze a newly discovered galaxy-galaxy scale gravitational lens system, FLS 1718+59 in the Spitzer First Look Survey (FLS) field. A background galaxy (z = 0.245) is severely distorted by a foreground galaxy (z = 0.08), via gravitational lensing. We analyze this system by several methods, including surface brightness fitting (Galfit and Ellipse), gravitational lens modeling (gravlens), and spectral energy distribution fitting (Magphys). From Galfit and Ellipse we measure properties of the lens galaxy, such as the effective radius and the average surface brightness inside it, the ellipticity, and the position angle. gravlens gives us the total mass inside the Einstein radius ($R_{Ein}$), and Magphys provides us an estimate of the stellar mass inside $R_{Ein}$. By comparing these obtained parameters, we confirm that the lens galaxy is an elliptical galaxy on the Fundamental Plane, and calculate the stellar mass function inside $R_{Ein}$, and discuss the implications of the results regarding the initial mass function.

  • PDF

Optimization of a Convective Rectangular Profile Annular Fin (대류 직각 형상 환형 휜의 최적화)

  • 강형석;조철현
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • The rectangular profile annular fin with fixed volume is optimized using 2-dimensional analytic method. For a base boundary condition, convection from fluid within the pipe to the inside wall of the pipe and conduction from the inside wall of the pipe to the fin base are considered. Heat loss from the fin tip radius is not ignored. The maximum heat loss, the optimum fin tip radius and the optimum fin half thickness corresponding to the maximum heat loss are presented as a function of fin base radius, Biot number over the fin surface and Biot number within the pipe. Results show 1) the maximum heat loss increases as both Biot number over the fin surface and Biot number within the pipe increase and as fin base radius decreases 2) the optimum fin thickness increases as Biot number within the pipe decreases or as fin base radius and Biot number over the fin surface increase.

Unveiling the Properties of FLS 1718+59: A Galaxy-Galaxy Gravitational Lens System

  • Taak, Yoon Chan;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.36.2-36.2
    • /
    • 2014
  • We present results of the analysis of FLS 1718+59, a galaxy-galaxy gravitational lens system in the Spitzer First Look Survey (FLS) Field. A background galaxy (z = 0.245) is severely distorted by an elliptical galaxy (z = 0.08), by gravitational lensing. We analyze this system by several methods, including Ellipse and Galfit fitting, gravitational lens modeling (gravlens), and SED fitting. Properties of the lens galaxy can be obtained: from Galfit we measure the effective radius and the average surface brightness inside it, and from gravlens we estimate the total mass inside the Einstein radius (lensing mass). We use these parameters to check that the lens galaxy is located on the Fundamental Plane. Also, we conduct SED fitting for the lens galaxy and estimate the stellar mass, and compare this with the lensing mass of the lens galaxy to check the M-L relation.

  • PDF

Optimization of an Annular Fin with a Pipe of Variable Inner Radius for Fixed Fin Volume (고정된 휜 체적에 기준한 원관 내부반경이 변하는 환형 휜의 최적화)

  • Kang, Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.229-235
    • /
    • 2010
  • Optimum values of fin performance and dimensions for an annular fin with a rectangular profile and a pipe with variable inner radius are determined by using a variable separation method. The range of ambient convection characteristic number that results in optimum heat loss is listed. The optimum heat loss, corresponding optimum fin effectiveness, fin length, and fin height are presented as a function of the inner radius of the pipe, inner fluid convection characteristic number, fin volume, and ambient convection characteristic number. One of the results shows that the optimum heat loss, fin effectiveness and fin length increase linearly with the inner radius of the pipe when both the fin volume and fin-base radius are fixed.

CONCERNING THE RADII OF CONVERGENCE FOR A CERTAIN CLASS OF NEWTON-LIKE METHODS

  • Argyros, Ioannis K.
    • The Pure and Applied Mathematics
    • /
    • v.15 no.1
    • /
    • pp.47-55
    • /
    • 2008
  • Local convergence results for three Newton-like methods in Banach space are provided. A comparison is given between the three convergence radii. Then we show that using the largest convergence radius we can pick an initial guess from with we start the corresponding iteration. It turns out that after a finite number of steps we can always use the iterate found as the starting guess for a faster method, since this iterate will be inside the convergence domain of the new method.

  • PDF