• 제목/요약/키워드: Insert metal

검색결과 151건 처리시간 0.019초

Ni-Cr계 내열주강의 천이액상 접합 (Transient Liquid Phase Bonding of Ni-Cr Heat Resisted Cast Steel)

  • 권영순;신철균;김현식;김환태;김지순;석명진
    • 한국분말재료학회지
    • /
    • 제9권3호
    • /
    • pp.189-198
    • /
    • 2002
  • In this work, transient liquid phase (TLP) bonding of Ni-Cr heat resisted cast alloy (HP) was investigated. And also the behaviors of the solid particles distributed in the interlayer during TLP bonding were investigated. The MBF-60 and solid particles (Ni, Fe, and $Al_2O_3$ powders respectively) added MBF-60 which will be a liquid phase coexisting with solid particles at the bonding temperature were used as insert metal. The effective and sound bonding was possible by spark plasma sinter-bonding due to the differences of electric resistance between base metal and liquid insert layer which creates high temperature region. During the isothermal solidification, $Al_2O_3$ particles and solid particles of liquid phase sintered insert metal have shown no growth, while Ni and Fe particles grow rapidly. In this TLP bonding using the MBF-60 and distributed Fe, Ni particles as insert materials, the whole isothermal solidification process was dominated by the growth rate of the solid particles distributed in the interlayer.

차단대역 특성이 개선된 금속삽입 필터의 성능평가 (Performance of the Metal Insert Filter with Improved Stopband Characteristic)

  • 김병수;전계석
    • 한국통신학회논문지
    • /
    • 제25권6A호
    • /
    • pp.818-824
    • /
    • 2000
  • 단일 또는 2중 금속삽입 필터의 도파관 폭을 축소시켜 차단대역 특성을 개선시키기 위한 연구가 수행되어 왔다. 그러나 이러한 구조의 필터는 도파관의 폭 변화에 의한 삽입손실을 최소화시켜야 하는 설계상의 어려움과 더불어 도파관의 폭을 축소시키는 까다로운 제작상의 문제점이 발생한다. 본 논문에서는 도파관의 폭을 변화시켜 차단대역 특성을 개선시키는 필터의 설계와 제작이 어려우므로 이를 극복하는 방법으로 폭 변화없는 3중 금속삽입 필터의 사용을 제안하고 삽입 금속판 길이의 제작상 오차 0.1mm를 고려한 최적화 설계방법을 사용하여 필터를 설계하고 제작하였다. 제작된 3중 금속삽입 필터의 측정 결과는 13.62 GHz에서 67.5 dB의 삽입손실로 가장 개선된 차단대역 특성으로 설계치와 일치하였다. 그러므로 필터의 최적화 설계에 의한 3중 금속삽입 필터의 제작방법이 차단대역 특성을 개선시키는데 실용적임을 보였다.

  • PDF

유사 조성의 모재분말과 Ni기 삽입금속 혼합분말을 사용한 천이액상확산 접합 시 모재의 용해현상 (Dissolution Phenomenon of the Base Metal during TLP Bonding Using the Modified Base Metal Powder and Ni Base Filler Metal Powder)

  • 송우영;예창호;강정윤
    • Journal of Welding and Joining
    • /
    • 제25권3호
    • /
    • pp.64-71
    • /
    • 2007
  • The dissolution phenomenon of the solid phase powder and base metal by liquid phase insert metal during Transient Liquid Phase bonding using the mixed powder composed of the modified GTD111(base metal) powder and the GNi3 (Ni-l4Cr-9.5Co-3.5Al-2.5B) powder was investigated. In case of the mixed powder contains modified GTD111 powder 50wt%, all of the powder was melted by liquid phase at 1423K. At the temperature between solidus and liquidus of GNi3, liquid phase penetrated into the boundary of the modified GTD111 powder and solid particle separated from powder was melted easily because area of reaction was increased. With increasing mixing ratio of the modified GTD111, it needed the higher temperature to melt all of the modified GTD111 powder. During Transient Liquid Phase bonding using the mixed powder composed of the modified GTD111 50wt% and GNi3 50wt% as insert metal, width of the bonded interlayer was increased with increasing bonding temperature by reaction of the base metal and liquid phase in insert metal. Dissolution of the base metal and modified powder by liquid phase progressed all together and after all of the powder was melted nearly, the dissolution of the base metal occurred quickly.

Cu-7.5wt% Zr 삽입 금속을 이용한 $Al_2O_3$-STS 304 접합체 계면 조직에 관한 연구 (A Study on the joining of $Al_2O_3$ to STS 304 with using Cu-7.5wt% Zr Insert metal)

  • 김병무;한원진;강정윤;이상래
    • Journal of Welding and Joining
    • /
    • 제11권1호
    • /
    • pp.62-72
    • /
    • 1993
  • Recently there is an increased interest in joining of ceramics to metals and brazing now an accepted method of joining for a wide variety of ceramic to metal combination. The present research work is aimed at establishing the basis of the metal-ceramic joining of $Al_{2}$O$_{3}$ to STS 304 with using Cu-7.5wt% Zr insert metals. Also the microstructures of the brazed joints were observed by using optical microscope and SEM and the reaction products were analyzed by using EDX, WDX and XRD. As a result, the following findings were obtained. The reaction layers of the brazed joints of $Al_{2}$O$_{3}$ to STS 304 are composed of four layers at the bonded interlayer. Double reaction layers are formed at the interface of $Al_{2}$O$_{3}$ insert metal. Layer I was composed of ZrO$_{2}$ particles, Fe-Cr-Ni compounds in Cu matrix, while layer II ZrO$_{2}$ band phase containing Fe-Cr-Ni compounds.

  • PDF

304 스테인레스강과 구조용탄소강과의 천이액상확산접합에 관한 연구 (A study on transient liquid phase diffusion bonding of 304 stainless steel and structural carbon steels)

  • 김우열;정병호;박노식;강정윤;박세윤
    • Journal of Welding and Joining
    • /
    • 제9권4호
    • /
    • pp.28-39
    • /
    • 1991
  • The change of microstructure in the bonded interlayer and mechanical properties of the joints were investigated during Transient Liquid Phase Diffusion Bonding(TLP bonding) of STS304/SM17C and STS304/SM45C couples using Ni base amorphous alloys added boron and prepared alloy as insert metal. Main experimental results obtained in this study are as follows: 1) Isothermal solidification process was completed much faster than theoretically expected time, 14ks at 1473K temperature. Its completion times were 3.6ks at 1423K, 2.5ks at 1473K and 1.6ks at 1523K respectively. 2) As the concentration of boron in the insert metal increased, the more borides were precipitated near bonded interlayer and grain boundary of STS304 side during isothermal solidification process, its products were $M_{23}P(C,B)_6}_3)$ The formation of grain boundary during isothermal solidification process was completed at structural carbon steel after starting the solidfication at STS304 stainless steel. 4) The highest value of hardness was obtained at bonded interface of STS304 side. The desirable tensile properties were obtained from STS304/SM17C, STS304/SM45C using MBF50 and experimentally prepared insert metal with low boron concentration.

  • PDF

브레이징한 2상 스테인리스강 UNS32550의 미세조직 및 기계적 특성 (Microstructure and Mechanical Property of Brazed Joint in Duplex Stainless Steel, UNS32550)

  • 김대업;강정윤
    • Journal of Welding and Joining
    • /
    • 제21권2호
    • /
    • pp.64-69
    • /
    • 2003
  • The bonding phenomena and mechanical property of duplex stainless steel during brazing have been investigated. The UNS32550 was used for base metal, and the MBF50 was used for insert metal. Brazing was carried out under the various conditions (brazing temperature : 1473K, 1498K, holding time : 0∼1.8ks). There were various microconstituents in the bonded interlayer because of reaction between liquid insert metal and base metal. In the early stage of brazing, BN is formed in the bonded interlayer and base metal near the bonded layer. Cr made is formed in the bonded interlayer. The amount of BN and Cr nitrides decrease with the increase of bonding temperature and holding time. Superior shear strength of 550MPa is obtained by restraining the formation of nitrides. (Received January 17, 2003)

Cu-Sn 삽입금속을 이용한 DP강의 아크 브레이징 접합부의 미세조직과 인장특성 (Microstructure and Tensile Strength Property of Arc Brazed DP steel using Cu-Sn Insert Metal)

  • 조욱제;조영호;윤중길;강정윤
    • Journal of Welding and Joining
    • /
    • 제31권1호
    • /
    • pp.58-64
    • /
    • 2013
  • The following results were obtained, microstructures and tensile properties in arc brazed joints of DP(dual phase) steel using Cu-5.3wt%Sn insert metal was investigated as function of brazing current. 1) The Fusion Zone was composed of ${\alpha}Fe+{\gamma}Cu$ and Cu23Sn2. The reason for the formation of these solid solutions. Despite, Fe & Cu were impossible to solid solution at room temperature. It's melting & reaction to something of insert metal & Base Metal (DP Steel) by Arc. Brazing Process has faster cooling rate then Cast Process, Supersaturated solid solution at room temperature. 2) The increase Hardness of Fusion Zone was directly proportional to the rise of welding current. Because, ${\alpha}Fe+{\gamma}Cu$ phase (higher hardness than the Cu23Sn2.(104.1Hv < 271.9Hv)) Volume fraction was Growth, due to increasing the amount of base metal melting by High current. 3) The results of tensile shear test by Brazing, All specimens happen to fracture in Fusion Zone. On the other hand, when Brazing Current increasing tend to rise tensile load. but it was very small, about 26-30% of the base metal. 4) The result of fracture analysis, The crack initiate at Triple Point for meet to Upper B.M/Under B.M/Fusion Zone. This Crack propagated to Fusion zone. So ruptured by tensile strength. The Reason to in the fusion zone fracture, Fusion zone by Brazing of hardness (strength) was very lower then the base metal (DP steel). In addition the Fusion Zone's thickness in triple point was thin than the base metal's thickness in triple point.

천이액상확산접합에 의한 합금공구강의 접합특성 (Joinability of Tool Steels by TLP Bonding)

  • 권병대;이원배;김봉수;홍태환;서창제;정승부
    • Journal of Welding and Joining
    • /
    • 제21권4호
    • /
    • pp.69-74
    • /
    • 2003
  • The mechanical properties of STD11 Joints by using TLP (Transient Liquid Phase Diffusion) bonding method employing MBF-30 and MBF-80 insert metals were investigated with concerning to the microstructural change. TLP bonding of STD 11 was carried out at 1323∼1423K for 0.6ks∼3.6ks in vacuum. The microstructure and the element distribution of the interlayer between tool steels and insert metals showed specific feature with bonding conditions. It was found that the width of the interlayer increased at initial bonding stage. However, the width of interlayer showed nearly constant value during the isothermal solidification. After isothermal solidification was completed, the joint showed homogeneous element distribution and similar microstructure with base metal because of the grain boundary migration to the bonded interlayer. The bonding strength measured by a tensile test has been varied with the bonding conditions. The maximum joint strength, 760MPa, was obtained with the condition of 1423K for 1.2ks using MBF30 insert metal in this experiment.

금속 박판의 표면가공과 인서트 사출을 통한 형내 접합기술 (In-mold Assembly of Polymer and Surface-machined Sheet Metal by Insert Injection Molding)

  • 김성원;김선경
    • 소성∙가공
    • /
    • 제20권1호
    • /
    • pp.64-72
    • /
    • 2011
  • In this study, we have investigated bonding of metal and plastic parts with single planar interface. This is facilitated by surface processing of aluminum sheet, which consists of slitting and punching, followed by insert-molding of polybuthylelne terephthalate(PBT). An injection mold has been built to fabricate specimen. After processing of the specimen, tensile and bending shear adhesion tests have been fulfilled according to KS M3734 and KS M3723, respectively. We also have conducted simulation of tensile and bending shear adhesion tests. Based on the tests results, the proposed bonding method outperforms existing methods based on adhesion.

WC-9%Co와 SUJ2강의 접합특성에 미치는 열처리의 영향 (The Effect of Heat-treatment on Brazing Characteristics of WC-9%Co/SUJ2 Steel)

  • 정하윤;김종철;박경채
    • Journal of Welding and Joining
    • /
    • 제15권5호
    • /
    • pp.56-63
    • /
    • 1997
  • In The study, the bonding of WC-9%Co to SUJ2 steel using Ag-Cu-Zn-Cd insert metal has performed to investigate the bonding properties by heat-treatment. Bonding was brazed for 5-30min at 95$0^{\circ}C$, performed solution treatment for 5 min at 85$0^{\circ}C$ and sustained subsequently oil quenching. To investigate the effect of heat-treatment, tempering was executed at $600^{\circ}C$ for 30 min after oil quenching. Mechnical properties and chemical compositions on the brazed bonding interface were investigated by means of microstructural observation, 4-point bending test and EDS and XRD measurements. The results obtained were as follows. 1) The bonding strength of WC-9%Co/SUJ2 joints by Ag-Cu-Zn-Cd insert metal obtained about 78, 117 and 72MPa after brazing for 5, 20 and 30 min at 95$0^{\circ}C$. And the highest bonding strength obtained about 131MPa after brazing for10 min at 95$0^{\circ}C$ 2) Higher bonding strength of 288MPa was obtained in the joint that brazed for 10 min at 95$0^{\circ}C$, and carried out tempering for 30 min at $600^{\circ}C$ subsequently. 3) Fracture of joint brazed by Ag-Cu-Zn-Cd insert metal for 5, 10, 20 and 30 min created WC-9%Co/SUJ2 interface. The joint that brazed for 10 min at 95$0^{\circ}C$ and then tempered for 30 min at $600^{\circ}C$ was fractured at the site of WC-9%Co.

  • PDF