• Title/Summary/Keyword: Insecticide resistance

Search Result 91, Processing Time 0.017 seconds

Molecular Mechanism of ABC Transporter Mdr49A Associated with a Positive Cross-Resistance in Transgenic Drosophila (형질전환 초파리를 이용한 Mdr49A 유전자의 살충제 교차저항성 기능 구명)

  • Seong, Keon Mook;Pittendrigh, Barry R.
    • Korean journal of applied entomology
    • /
    • v.59 no.4
    • /
    • pp.341-348
    • /
    • 2020
  • The ATP-binding cassette (ABC) transporter superfamily represents the largest transmembrane protein that transports a variety of substrates across extra- and intra-cellular membranes. In insects, the ABC transporter proteins play crucial roles in insecticide resistance. To date, no studies have investigated the involvement of ABC transporter gene for cross-resistance to insecticide chemistries. Here, we studied such possible mechanisms against six conventional insecticides using transgenic Drosophila melanogaster strains carrying Mdr49 transcript variant A. For the 91-R and 91-C strains of Drosophila melanogaster, although they have a common origin, 91-R has been intensely selected with DDT for over 60 years, while 91-C has received no insecticide selection. Our transgenic analyses showed that overexpression of 91-R-MDR49 transcript variant A along with three amino acid variations can yield a relatively low degree of cross-resistance to carbofuran (2.0~6.7-fold) and permethrin (2.5~10.5-fold) but did not show cross-resistance to abamectin, imidacloprid, methoxychlor, and prothiofos as compared to the Gal4-driver control strain without transgene expression. These results indicate that the overexpression of Mdr49A in itself leads to a cross-resistance and three amino acid changes have additional effects on positive cross-resistance to carbofuran and permethrin.

Insecticide Targets: Learning to Keep Up with Resistance and Changing Concepts of Safety

  • Casida, John E.;Quistad, Gary B.
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.185-191
    • /
    • 2000
  • Pest insect control is dependent on about 200 insecticides that work by relatively few mechanisms. The targets they disrupt are mostly involved in the nervous system, respiratory chain, growth and development, or the gut. The major nerve targets are: acetylcholinesterase for the organophosphates and methylcarbamates; the nicotinic acetylcholine receptor for the neonicotinoids; the $\gamma$-aminobutyric acid receptor for several chlorinated hydrocarbons and fipronil; the voltage-gated sodium channel for DDT and pyrethroids. Selection of resistant strains often confers cross-resistance to some or all other insecticides working at the same site. The toxicological properties of different compounds acting on the same target are increasingly considered together, summating the risk even though the compounds are of quite diverse chemical types. Continuing attention is also being given to secondary targets not involved in the primary mechanism of toxicity but instead in side effects that must be considered in the overall safety evaluation. Research on insecticide targets is important in learning to keep up with resistance and changing concepts and policies on safety. These relationships are illustrated by recent studies in the Environmental Chemistry and Toxicology Laboratory of the University of California at Berkeley.

  • PDF

An Integrated Biological Control Using an Endoparasitoid Wasp (Cotesia plutellae) and a Microbial Insecticide (Bacillus thuringiensis) against the Diamondback Moth, Plutella xylostella (배추좀나방에 대한 프루텔고치벌과 미생물농약의 통합생물방제)

  • Kim, Kyusoon;Kim, Hyun;Park, Young-Uk;Kim, Gil-Hah;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.52 no.1
    • /
    • pp.35-43
    • /
    • 2013
  • All tested Korean populations of the diamondback moth, Plutella xylostella, are known to be resistant especially against pyrethroid insecticides by mutation in its molecular target, para-sodium channel. Moreover, P. xylostella is able to develop resistance against most commercial insecticides. This study was performed to develop an efficient control technique against P. xylostella by a combined treatment of an endoparasitoid wasp, Cotesia plutellae, and a microbial insecticide, Bacillus thuringiensis. To investigate any parasitism preference of C. plutellae against susceptible and resistant P. xylostella, five different populations of P. xylostella were compared in insecticide susceptibilities and parasitism by C. plutellae. These five P. xylostella populations showed a significant variation against three commercial insecticides including pyrethroid, organophosphate, neonicotinoid, and insect growth regulator. However, there were no significant differences among five P. xylostella populations in their parasitic rates by C. plutellae. Moreover, parasitized larvae of P. xylostella showed significantly higher susceptibility to B. thuringiensis. As an immunosuppressive agent, viral ankyrin genes (vankyrins) encoded in C. plutellae were transiently expressed in nonparasitized larvae. Expression of vankyrins significantly enhanced the efficacy of B. thuringiensis against the third instar larvae of P. xylostella. Thus an immunosuppression induced by C. plutellae enhanced the insecticidal efficacy of B. thuringiensis. These results suggest that a combined treatment of C. plutellae and B. thuringiensis may effectively control the insecticide-resistant populations of P. xylostella.

Characteristics of Resistance to Chlorpyrifos in Diamondback-moth (Plutella xylostella L.) (Chlorpyrifos 저항성 배추좀나방(Plutella xylostella L.)의 살충제 저항성 특성)

  • Kim, Kyung-Ju;Kim, Sung-Su;Kim, Song-Mun;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.4
    • /
    • pp.288-295
    • /
    • 2003
  • To determine the mechanism of the resistance to organophosphorus insecticide, chlorpyrifos, in diamondback-moth (Plutella xylostella L.), activities of esterases, glutathione-S-transferase (GST) and AChE insensitivity which were known for causing factor of resistance were measured. Also, the relationship between AChE insensitivity and the resistant ratio was investigated to inquiry the cross-resistance. The resistant ratio of chlorpyrifos-resistant strain (CRS) of diamondback-moth at the 6th generation was developed 160 fold compared to susceptible strain (SS) one. Activity of GST that are extracted from CRS was 1.7-fold higher than that from SS. However, activity of total esterases from CRS was similar to that from SS. In AChE insensitivity test, CRS was 11.8-fold less sensitive than that from SS. CRS was ranged from 17.6 to 33.6-fold less sensitive than SS to other insecticides having same target site with chlorpyrifos such as dichlorvos, dimethylvinphos and carbofuran. Insensitivity of AChE to phenthoate-oxon, however, was 1.7-fold. Resistance of CRS was 82-fold, 47-fold and 42-fold higher than SS to dichlorvos, dimethylvinphos and carbofuran, respectively, but 2.3-fold to phenthoate and then we could identify that the resistance development of insecticide might have a lot of difference among the chemicals with the same target site. The relationship between the AChE insensitivity and the resistant ratio was significantly correlated$(r=0.9951^{**},\;p^{(0.01)}$. This result indicates that AChE insensitivity was associated with insecticide resistance. Overall, these results suggest that insensitivity of AChE was an important factors to chlorpyrifos resistance in diamondback-moth, and the slightly increased activity of GST may also have contributed to that.

Variation in Insecticide Susceptibilities of the Beet Armyworm, Spodoptera exigua (Hubner): Esterase and Acetylcholinesterase Activities (파밤나방(Spodoptera exigua (Hubner))의 살충제 감수성 변이-에스테라제와 아세틸콜린에스테라제 활력)

  • 김용균;이준익;강성영;한상찬
    • Korean journal of applied entomology
    • /
    • v.36 no.2
    • /
    • pp.172-178
    • /
    • 1997
  • There was a great variation in insecticide susceptibilities among field and laboratory populations of the beet armyworm, Spodoptera exigua (Hiibner). Unselected laboratory population, which had been reared for 6-7 generations in our laboratory without exposure to insecticides, was more susceptible than its parental field population in all tested insecticides. Two selected laboratory populations with parathion or deltamethrin showed much higher insecticide tolerance than did the unselected laboratory population in their own selection insecticide. The variation of the insecticide susceptibilities was highly correlated with esterase and acetylcholinesterase activities. Field and the selected laboratory populations had lower acetylcholinesterase activities and higher esterase activities than did the unselected laboratory population. Acetylcholinesterase of the field and the selected laboratory populations had higher Km values than did that of the unselected. In a population, Km values were varied among different developmental stages; acetylcholinesterase of the fifth instar larvae had the highest Km value among those of the other larval stages. Twenty one esterase bands were separated on 6.5% nondenaturing polyacrylamide gel from the whole body extracts of the fifth instar larvae. E2, E7, E8, Ell, El6, and El7 esterase bands were developed more frequently in the insecticides-selected populations than in the unselected population. These results suggest that the variation of insecticide susceptibilities of the beet armyworm includes both biochemical mechanisms: target site insensitivity and enhanced activity of detoxification enzyme.

  • PDF

Selection of Insecticide Resistance Markers in Field-collected Populations of Myzus persicae (복숭아혹진딧물 야외개체군의 살충제 저항성 마커 선발)

  • Kim, Ju Il;Kwon, Min;Shim, Jae Dong;Kim, Jeom Soon;Lee, Yeong Gyu;Jee, Sam Nyu;Lee, Jeong Tae;Ryu, Jong Soo;Yoo, Dong Lim;Lee, Gye Jun
    • Korean journal of applied entomology
    • /
    • v.53 no.2
    • /
    • pp.149-156
    • /
    • 2014
  • The resistance levels of the green peach aphid, Myzus persicae (Sulzer), against 10 insecticides was checked and selected the applicable insecticide resistance markers. We conducted our study in 5 cabbage cultivation regions (Pyeongchang, Hongcheon, Bongwha, Muju, and Jeju) of Korea, over 3 successive years (2009-2011). We selected a multi-resistant (MR) strain from among the 5 field-collected populations. We analyzed esterase over-expression and mutation(s) in the target sites, by using native isoelectric focusing (IEF) and quantitative sequencing (QS). We detected esterase over-expression and StoF mutation in the acetylcholinesterase 1 gene (ace1) in all of the field-collected populations, including the MR strain. We did not detect the LtoF mutation, which is a well-known knockdown resistance (kdr) mutation in the para-type sodium channel gene (para), in the MR strain; however, the value of the MR strain for bifenthrin was 3,461-fold higher than that of the susceptible strain. Our results indicate that insecticide resistance is more effectively evaluated using molecular markers than by conducting a bioassay. The molecular markers StoF in ace1 and MtoL in para can easily be applied in diagnostic methods such as QS or PCR amplification of specific alleles (PASA). These methods may be extended to management of M. persicae resistance in the field.

Diagnostic Device Model for Insecticide susceptibilities of Beet Armyworm, Spodoptera exigua(Hubner) (파밤나방(Spodoptera exigua (Hiibner)) 살충제 감수성 진단장치모형)

  • 김용균;이준익;강성영;한상찬
    • Korean journal of applied entomology
    • /
    • v.38 no.1
    • /
    • pp.53-57
    • /
    • 1999
  • Simple diagnostic kits for monitoring insecticide susceptibility of beet armyworm, Spodoptera exigua (Hiibner) were developed and applied to the field populations. The operation of the kits was based on the correlations between enzyme activities of esterase (EST) and acetylcholinesterase (AChE) and the insecticide susceptibilities. Four different kinds of diagnostic kits (ED, EM, AD, and AM) were designed and classified by diagnostic enzymes (E for esterases and A for acetylcholinesterase) and inhibitors (D for dichlorvos and M for monocrotophos). Diagnostic inhibitor concentrations were 1 mM for ED, 10 mM for EM, 100 mM for AD, and 100 mM for AM. Resistant larvae which were not inhibited by the diagnostic amounts of insecticides developed positive staining (red color), but susceptible~ s howed negative (no color). An insect was used for both EST and AChE diagnostic kits, but different in their samples: hemolymph for EST and the head for AChE. These four diagnostic kits were applied to 1 1 different populations which showed variations of insecticide susceptibilities. Four kits were different in the capability discriminating the insecticide susceptibilites according to insecticides: ED to bifenthrin, AD to methomyl, and ED and AM to chlorpyrifos-methyl. These diagnostic devices can be used for insecticide-resistance management program for this insect pest. It also provide a technical guide to insect pest management for farmers, directors, and researchers.

  • PDF

Synergistic Action of Insecticide Mixtures to the Green Peach Aphid(Myzus persicae Sulz.) Resistant to Acephate and Demeton-S-methyl (Acephate, Demeton-S-methyl 저항성계통(抵抗性系統) 복숭아혹진딧물에 대(對)한 살충제간(殺蟲劑間)의 연합독작용(連合毒作用))

  • Choi, S.Y.;Kim, G.H.
    • Korean journal of applied entomology
    • /
    • v.26 no.3 s.72
    • /
    • pp.151-157
    • /
    • 1987
  • The toxicities of binary mixtures of the four insecticides acephate, demeton-S-methyl, cypermethrin and pirimicarb to the two strains of green peach aphid (Myzus persicae Sulz.) resistant to acephate and demeton-S-methyl were investigated and compared to the toxicities of their individual insecticides. The synergistic action of the insecticide mixtures to the insects were greatly varied with the kind of insecticide combinations, their mixture ratios, and the origin of resistance by an insecticide. The maximum synergistic action of acephate for the acephate resistant strain was obtained at 1:1 mixed with demeton-S-methyl. However, there were some antagonistic effects in all acephate mixtures with pirimicarb and cypermethrin. With the strain of demeton-S-methyl resistance, acephate, cypermethrin, and pirimicarb were synergized at the given mixture ratios by demeton-S-methyl. The maximum synergistic effect was observed at 2:3 with acephate, 1:1 with cypermethrin and 3:2 with pirimicarb.

  • PDF

Rice Insects : The Role of Host Plant Resistance in Integrated Management Systems

  • Heinrichs, E.A.
    • Korean journal of applied entomology
    • /
    • v.31 no.3
    • /
    • pp.256-275
    • /
    • 1992
  • Insects are among the most important abiotic and biotic constraints to rice production. National rice research programs are in various stages in the development and implementation of integrated pest management (IPM) stratagies for rice insect control. Among the various control tactics, insect resistant cultivars are sought as the major tactic in rice IPM. Through the activities of interdisciplinary teams of scientists significant progress has been made in the development and release of insect resistant cultivars to farmers. Because of its compatibility with other control tactics insect resistance has proven to fit well into the IPM approach to rice insect control agents and minimize the need for insecticide applications. The development of biotypes which overcome the resistance in rice plants has been a significant constraint in the breeding of rice for resistance to insects. Most notable examples in Asia are the green leafhopper, Nephotettix virescens, brown planthopper, Nilaparvata lygens and the Asian rice gall midge, Orseolia oryzae. The current breeding stratege is to develop rice cultivars with durable resistance on which virulent biotypes cannot adapt. In spite of the significant progress made in the breeding of insect resistant cultivars there are still numerous important rice insect species for which host plant resistance as a control tactic has not been fully utilized. Advances in biotechnology provide promise of solving some of the problems that have limited the use of host plant resistance as a major tactic in the integrated management of rice insect pests.

  • PDF

Comparison and Analysis of Insecticide Resistance of Two Spotted Spider Mite (Tetranychus urficae) among Apple Orchards (사과과수원 점박이응애의 약제 저항성 비교 분석)

  • Lee, Si-Woo;Kim, Kwang-Ho;Park, Chang-Gyoo;Park, Hong-Hyun;Lee, Kwan-Suk;Choi, Byeong-Ryeol;Lee, Sang-Guye
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.3
    • /
    • pp.266-271
    • /
    • 2010
  • Six insecticides, monocrotophos (24%, Lq), milbemectin (1%, Ec), tebufenpyrad (10%, Ec), propargite (30%, Wp), dicofol (42%, Ec), and fenpropathrin (5%, Ec) were studied for their $LC_{50}s$ to local two-spotted spider mite (TSSM) strains collected at apple orchards in Chungju, Kunwi and Sobo in Korea. Monocrotophos and fenpropathrin were not effective due to resistance development, but milbemectin, tebufenpyrad, dicofol and propargite were effective to TSSM. $LC_{50}$ values to TSSM strains showed the same distribution pattern among apple orchards. However, TSSMs from different apple orchard were clustered into different groups.