• Title/Summary/Keyword: Insecticide Toxicity

Search Result 99, Processing Time 0.026 seconds

Evaluation and Comparison with Standard 48 hr Acute Bioassay and High Temperature Rapid Toxicity Test for Sewage Toxicity Test (하수의 독성평가를 위한 표준독성시험법과 온도증가 단기독성평가법의 비교 평가)

  • Lee, Sang-Ill;Jun, Byong-Hee;Weon, Seung-Yeon;Kim, Yi-Jung;Kim, Keum-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.191-197
    • /
    • 2005
  • A new method, ToxTemp (TOXcity test based on TEMPerature control) using Ceridaphnia dubia was applied to evaluate the toxicity of insecticide materials and compared with the standard 48 hr acute bioassay. BPMC, diazinon and fenitrothion may cause the inhibition to the biological process in sewage treatment plant and need to detect toxicity within short contact time. The ToxTemp method showed sensitive detection with more shorter contact of 1-1.5 hr time than that of the standard 48 hr acute bioassay. To evaluate toxicity of real wastewater/sewage, the inhibition rate of nitrification and oxygen uptake rate (OUR) using activated sludge, the standard 48hr acute bioassay and ToxTemp method using C. dubia were compared, respectively. On the basis of the inhibition rate of nitrification, the OUR test showed the less sensitive results at the relatively strong toxic sewage. On the other hands, the standard 48hr acute bioassay and ToxTemp method using C. dubia represented the toxicity of each wastewater/sewage with high sensitivity. Even the slightly low (about 1.5%) sensitivity, the ToxTemp method showed the high applicability to the real site of sewage treatment plant.

Acute Toxicity Test of KH-502 (Flupyrazofos) in Rats and Mice (KH-502의 랫트 및 마우스를 이용한 급성독성시험)

  • 송시환;김형진;신천철;임광현;하창수;한상섭
    • Toxicological Research
    • /
    • v.14 no.2
    • /
    • pp.227-235
    • /
    • 1998
  • KH-502 (Flupyrazofos), a new organophosphorus insecticide synthesized by Korea Re-search Institute of Chemical Technology, was found to be effective against diamond-back moth(Plutella xylostella). This study was carried out to determine the acute toxicity of KH-502 in Sprague-Dawley rats and ICR mice. The test article was orally or dermally administered to the animals. Death, tremors, salivation, lacrimation, abnormal gait and corneal opacity were observed. Decrease in body weight gain was observed in all treatment groups. At necropsy, dark red coloration of lung, enlargement of adrenal glands and atrophy of spleen were observed. The oral $LD_{50}$ value was 372 mg/kg in male rats, 605 mg/kg in female rats, 186 mg/kg in male mice, and 115 mg/kg in female mice. And the dermal $LD_{50}$ was 4086 mg/kg in male and 3881 mg/kg in female rats.

  • PDF

Toxicity Assessment and Establishment Acceptable Daily Intake of Lepimectin (레피멕틴(Lepimectin)의 독성평가와 일일섭취허용량 설정)

  • Jeong, Mi-Hye;Hong, Soon-Sung;Park, Kyung-Hun;Park, Jae-Eup;Kwack, Seung-Jun;Kim, Young-Bum;Han, Bum-Seok;Son, Woo-Chen
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.2
    • /
    • pp.218-229
    • /
    • 2011
  • Lepimectin is a insecticide agent. In order to register this new pesticide, the series of toxicity data on animal testing were reviwed to evaluate its hazards to consumers and to determine its acceptable daily intake. Lepimectin was mostly excreted by feces. It has low acute oral toxicity while it has no dermal, ocular irritation and skin sensitization (As the result of subchronic, chronic toxicity and carcinogenicity showed changes of hematology and clinical biochemistry parameter of serum and blood.). Two-generation reproduction toxicity, genotoxicity, carcinogenicity and prenatal development toxicity were not proven. Therefore, the ADI for Lepimectin is 0.02 mg/kg/ bw/day, based on the NOAEL of 2.02 mg/kg/ bw/day of two-years carcinogenic toxicity study in rats and applying an uncertainty factor of 100.

Formulation of Mamestra brassicae Nucleopolyhedrovirus-K1 as Viral Insecticide

  • Choi, Jae-Bang;Shin, Tae-Young;Bae, Sung-Min;Woo, Soo-Dong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.21 no.1
    • /
    • pp.139-143
    • /
    • 2010
  • The objective of our study was the formulation of a local strain of Mamestra brassicae nucleopolyhedrovirus-K1 (MabrNPV-K1) for the development of viral insecticide to control M. brassicae. To formulate MabrNPV-K1, feeding toxicities of various supplements and ultraviolet (UV)-protection were investigated. Optical brightener Tinopal UNPA-GX (Tinopal) as UV protectant and Bentonite had some toxicity themselves to increase the mortality. The protection of polyhedra from UV light radiation was observed only by Tinopal. The MabrNPV-K1 was formulated as a wettable powder form. The mortality of the formulation was higher and rapid than that of the un-formulated. This suggested the possibility of MabrNPV-K1 formulation as an effective biological control agent for M. brassicae.

Delayed death after chlorfenapyr poisoning (클로르페나피르 중독 후 지연성 사망)

  • Lee, Jang Young
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.19 no.1
    • /
    • pp.51-54
    • /
    • 2021
  • Chlorfenapyr is a widely used insecticide, that is very lethal if ingested. It exhibits delayed toxicity in which there are few symptoms at first which suddenly worsen after a few days. A 66-year-old female patient ingested about 90 mL of chlorfenapyr liquid hydrating agent (Chlofenapyr 10%) and showed stable vital signs with no specific symptoms and findings other than a mild fever, vomiting, and nausea. From the 3rd day of ingestion, creatine kinase was high, and rhabdomyolysis was suspected. From the 4th day of ingestion, pancreatic enzymes began to gradually increase. A diffusion-weighted image showed a multifocal high signal intensity in the white matter and corpus callosum area. On the 8th day after ingestion, she suffered a high fever and a heart attack and died. Thus, if a patient is suspected of taking chlorfenapyr, he/she needs active treatment and monitoring even if he/she does not exhibit any symptoms.

Acute Toxicity Test of Agricultural Chemicals to Water Fleas (물벼룩을 이용한 농약의 급성 독성에 관한 연구)

  • Lee, Chan-Won;Ryu, Jae-Young;Lim, Kyeong-Won
    • Journal of Environmental Science International
    • /
    • v.16 no.1
    • /
    • pp.55-63
    • /
    • 2007
  • There are concerns that chemical residues could harm the consumer on the environment, although 50 to 80% of the crops would be destroyed by pests and others without agrochemicals. Environmental fate and ecotoxicity studies are usually carried out to assess the impact on the human and the environment. A comparision of the Daphnia magnia and Simocephalus mixtus toxicity was performed to study the relative sensitivities and discrimination abilities to agriculture chemicals. The species of Simocephalus mixtus was more sensitive to agriculture chemicals than Daphnia magnia. Simocephalus mixtus was approved to be a water flea in determining insecticide and pesticide toxicity by heart-beat rate in a consistency and repeatability. The order of acute toxicity to water flea Daphnia magnia for ecotoxicity test was carbaryl>benomyl>amtirole with both Daphnia magnia and Simocephalus mixtus. The heartbeat pattern after the exposure to agrochemicals was different from that of exposure to heavy metals. Agrochemical leathal concentration test with heartbeat rate measurement was found to be more appropriate than inhibition concentration test with respect to toxicological endpoint.

Toxicity of agricultural chemicals on Lymnaea viridis the intermediate host of Fasciola hepatica (간질(肝蛭)의 중간숙주(中間宿主)인 애기물달팽이에 대한 몇가지 농약(農藥)의 독성시험(毒性試驗))

  • Kim, Sang-ki;Lee, Chung-gil;Lee, Chai-yong
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.3
    • /
    • pp.455-460
    • /
    • 1993
  • In the present study, the effects of 4 agricultural chemicals commonly used in this conuntry were experimentally assessed on Lymnaea viridis the intermediate host of Fasciola hepatica, which in non-target organism of these chemicals. The major habitat of the snail is rice paddies in Korea and many agricultural chemicals are used for weed, fungi or insect control in rice paddies and there is a general concern that certain levels of these chemicals could reach the aquatic ecosystem and possible alter the snail life. Agricultural chemicals used in this study included two herbicides, an insecticide and a fungicide. The tenth generation of laboratory reared snails were selected and exposed to the varying concentrations(0-100 ppm) of these chemicals. As concentrations and time of exposure increase, the per cent mortality increases(p<0.01). $LC_{50}$(lethal concentration for 50% mortality) values of these chemicals on snail after 96-hour exposure were variable; iprobenfos showed the highest acute toxicity(12.6 ppm), while carbofuran showed the lowest acute toxicity(74.5ppm). Sublethal concentrations of chemicals after 96-hour exposure were also variable ; bentazone showed the highest chronic toxicity(0.81ppm), while carbofuran showed the lowest chronic toxicity(5.04 ppm).

  • PDF

Comparison of Acute Toxicity of Different Groups of Pesticides to Honey Bee Workers(Apis Mellifera L.)

  • Ulziibayar, Delgermaa;Jung, Chuleui
    • Journal of Apiculture
    • /
    • v.34 no.4
    • /
    • pp.305-313
    • /
    • 2019
  • Honey bees (Apis mellifera) forage in agricultural areas, and are exposed to diverse pesticide poisoning. Toxic effects on Apis mellifera of different groups of pesticides were tested in the laboratory; fungicide (Metconazole), herbicide (Glyphosate), acaricide (Amitraz), organophosphate insecticide(Fenitrothion) and neonicotinoid insecticides(Thiacloprid, Thiamethoxam, Imidacloprid, Acetamiprid, Dinotefuran and Clothianidin). Commercial formulations were serially diluted from the recommended concentration (RC) to 10-6 times to carry out feeding and contact tests. Toxicity was transformed into lethal dose (LD50) and hazard question (HQ). The acute toxicity of pesticides showed similar patterns between feeding and contact tests. But feeding tests showed greater toxic to honey bee than contact test. The organophosphate and nitro-neonicotinoid insecticides were highly toxic with HQ values ranging greater than 1. However, cyano-neonicotinoids of Thiacloprid and Acetamiprid showed low toxicity. Even at the RC, 24 hr mortalities were 18 and 30%. The acaricide (Amitraz) showed intermediate level of toxicity at RC but negligible at the concentration lower than 10-1 times. A fungicide(Metconazole) and herbicide(Glyphosate) showed minimal impacts. The results imply that the selective use of pesticides could help conservation of pollinators in agricultural production systems.

Selective Toxicity of Pesticides to the Predatory Mite, Phytoseiulus persimilis and Control Effects of the Two-spotted Spider Mite, Tetranychus urticae by Predatory Mite and Pesticide Mixture on Rose (칠레이리응애에 대한 농약의 선택독성과 장미에서 천적과 농약의 혼용에 의한 점박이응애의 방제효과)

  • 안기수;이소영;이기열;이영수;김길하
    • Korean journal of applied entomology
    • /
    • v.43 no.1
    • /
    • pp.71-79
    • /
    • 2004
  • Toxicities of 42 pesticides (13 acaricides, 13 insecticides, 13 fungicides and 3 adjuvants) commonly used to control rose insect, mite, and disease pests were evaluated to the two-spotted spider mite, Tetranychus urticae egg and adult, and its predator Phytoseiulus persimilis egg, nymph and adult at the recommended concentration. The effect of density suppression of T urticae by predatory mite and pesticide mixture on the rose in the greenhouses was also investigated. Among 13 acaricides tested, acequinocyl, bifenazate, fenbutatin oxide and spirodiclofen showed much less toxicity to P. persimilis than to T urticae. Among insecticides, acetamiprid, imidacloprid, spinosad, thiamethoxam and acetamiprid+etofenprox showed low toxicity to P. persimilis. and T ruticae. Among 13 fungicides, azoxystrobin, kresoxim-methyl, myclobutanil, nuarimol, triadimefon, triflumizole and oxadixyl+mancozeb had a negligible effect on P. persimilis and T. urticae. Among three adjuvants, cover and siloxane expressed high toxicity, while spreader showed very low toxicity to P. Persimilis. In the greenhouses experiments, the density of T urticae before treatment was 65.3 mites per leaf. However, their density after release about 30 predatory mites per rose abruptly decreased from 3.8 mites at 11th day to zero mite at 20th day. During survey periods, four treatments of fungicides (kresoxim-methyl, myclobutanil, nuarimol, triflumizole) for the control of Sphaerotheca pannosa and one treatment of insecticide (spinosad) the control of Frankliniella occidentalis were applied, and these treatments had no the pesticides had no effect on the predatory mite density. It may be suggested from these results that four acaricides, five insecticides, seven fungicides, and one adjuvant could be incorporated into the integrated T. urticae management system with P. persimilis on rose cultivation.

Production of Microbial Insecticide Using Bacillus thuringiensis BT17 for the Control of Lepidopteran Larvae (Bacillus thuringiensis BT17 균주를 이용한 인시목 유충 방제용 미생물 살충제 생산)

  • Ahn, Kyung-Joon;Lee, Tae-Geun
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.389-396
    • /
    • 2010
  • Insecticidal crystalline toxin producing Bacillus thuringiensis BT17 strain was isolated and identified as B. thuringiensis serovar colmeri by 16S rRNA analysis. BT17 strain produced crystalline ${\delta}$-endotoxin against to Lepidopteran larvae effectively on the culture broth of soybean meal and skim milk, $30^{\circ}C$ and 36 h shaking culture of 280 rpm. The maximum colony forming unit achieved when the culture was continued for 24 h, but the number of crystals increased until 36 h in the 200 L fermentor. Liquid type of biological insecticide product was made, and after 3 months storage in $20^{\circ}C$ the number of crystals was increased up to twice than beginning. Biocontrol effect of BT17 insecticide product was better in Plutella xylostella than in Spodoptera exigua, and the toxicity to animals was negligible.