• Title/Summary/Keyword: Inrush currents

Search Result 45, Processing Time 0.027 seconds

An analysis of limiting conditions of excess inrush currents and a derivation of the probability equations of inrush current occurrence (돌입전류의 제어조건 해석 및 돌입전류 발생 확률식의 유도)

  • 박영문
    • 전기의세계
    • /
    • v.14 no.5
    • /
    • pp.8-14
    • /
    • 1965
  • Because of the flat slope of the magnetic characteristic curves at high saturation, the transformer inrush current peakes may assume an extreme magnitude. Even though such is rarely any danger to the transformer itself, the currents can cause serious problems in associated apparatus. This paper has analyzed various limiting factors of excess inrush currents, and then has suggested how to determine the frequency of encountering the inrush current peaks higher than an arbitrarily chosen value by deriving the probability equations of inrush current occurrence.

  • PDF

The Analysis of Transient currents in a Magnetic coupling High-Tc superconducting Fault Current Limiter (자기결합형 고온초전도한류기의 과도전류 해석)

  • Joo, Min-Seok;Chu, Yong;Yim, Do-Hyun;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.24-26
    • /
    • 1995
  • In this paper, we investigated transient fault currents in a magnetic coupling High-Tc superconducting current limiter(HCL). It has an important effect on the reliability and stability of the power system. In order to analyze transient fault characteristics of HCL, we fabricated a magnetic coupling HCL and tested it in different fault conditions. An important parameter of design and manufacture which makes HCL inherently reliable is reduction of inrush fault currents. Without inrush fault currents, the currents flowing under such conditions can be limited to a desired-value within one cycle. Inrush fault current depends on saturation, normal spot propagation velocity, turns ratio and the fault angle.

  • PDF

A Study on the Inrush Current Detect Algorithm in Power Distribution System (배전계통(配電系統) 돌입전류(突人電流) 검출(檢出) 알고리즘에 관(關)한 연구(硏究))

  • Yoon, Man-Chul;Kwon, Wook-Hyun;Lee, Ki-Won
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.449-453
    • /
    • 1987
  • This paper presents the detecting algorithm of inrush current which causes protective equipment to maloperate in energizing a power distribution line. This detecting algorithm uses the method which extracts the decay component and energy of 2nd harmonics by Prony Spectral Estimation Method existed AR model to new ARMA model. In this paper, the inrush currents are obtained by model simulations and fild tests. By applying these data to the detecting algorithm, it has been confirmed to discriminate inrush currents from fault currents.

  • PDF

A Transformer Protection Relay Based on Induced Voltages

  • Kang, Yong-Cheol;Lee, Byung-Eun
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.2
    • /
    • pp.70-78
    • /
    • 2003
  • This paper describes a transformer protection relay based on induced voltages. The ratio of the induced voltages of the primary and secondary windings is equal to the turns ratio during normal operating conditions such as magnetic inrush, overexcitation, and steady state, but it differs from the turns ratio in the case of internal faults. For a single-phase and a three-phase Y-Y transformer, the induced voltages are estimated and the ratios are compared with the turns ratio. For three-phase Y-Δ transformers, the differences between the induced voltages are estimated to use the line currents because delta-winding currents are practically unavailable. The proposed relay is tested under various conditions such as magnetic inrush, internal winding faults, overexcitation, and different core characteristics. The results evidently indicate that the relay successfully discriminates internal faults from magnetic inrush and overexcitation. This paper concludes by implementing the relay into a TMS320C6701 digital signal processor and reports satisfactory results. The relay requires no hysteresis data and can reduce the operating time of a relay.

The Protective Relaying Scheme of Power Transformer Using Wavelet Based Neural Networks (웨이브렛 변환을 바탕으로 한 신경회로망을 이용한 전력용 변압기 보호 계전기법)

  • Gwon, Gi-Baek;Seo, Hui-Seok;Yun, Seok-Mu;Sin, Myeong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.3
    • /
    • pp.134-142
    • /
    • 2002
  • This paper presents a new method for the protective relaying scheme in power transformer using wavelet based neural networks. This approach is as fellows. After approximation and detail information is extracted by daub wavelet transform from differential current of power transformer, the former is used for obtaining the rate of differential currents and restrain currents, the latter used as the input of artificial neural networks to avoid the Hiss-operation in over-exciting state and magnetizing inrush state of power transformer. The simulation of EMTP with respect to different faults, inrush conditions and over-exciting conditions in power transformer have been conducted, and the results preyed that the proposed method is able to discriminate magnetizing inrush states, over-exciting stales and internal faults.

THE STUDY 01 CHARACTERISTICS OF INRUSH CURRENTS FOR HIGH POWER SHORT-CIRCUIT TESTING TRANSFORMER (단락시험용 대전류변압기 돌입전류특성에 관한 연구)

  • Roh, Chang-Il;La, Dae-Ryeol;Kim, Sun-Koo;Jung, Heung-Soo;Kim, Won-Man;Lee, Dong-Jun;Kim, Sun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.695-696
    • /
    • 2006
  • The inrush current of transformer cause saturation effects of recovery voltage for short-circuit power testing. the inrush current depends on the residual flux of the transformer core. when inrush current occurs, it is contains a d.c. component and the high harmonic content of the current are of importance to relay protection of testing circuit. this paper describes of decrease method of inrush current for high power short-circuit testing transformer.

  • PDF

A Study on the Voltage Drop of Induction Generator along the Rotor Shape (회전자 형상에 따른 유도발전기 전압강하에 대한 연구)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.62-66
    • /
    • 2015
  • Induction generator is easy to durability and maintenance than the synchronous generator. So, recently Induction generator has been widely applied to small-scale hydroelectric power plant. When the rotor is operating faster than synchronous speed, induction machine can generate electric power. Induction generator has a large inrush currents, such as the starting current of the induction motor. Induction motor has been designed a variety of rotor shape in order to reduce starting current. Since the occurrence of high inrush current cause a voltage drop to the system, it will need to reduce possible. Because the starting current of the squirrel-cage induction motor varies in accordance with the rotor shape, it is necessary to analyze the magnitude of inrush current in order to apply to the generator. In this study, we analyzed the inrush current and the voltage drop caused in accordance with the rotor shape of 1500kw induction generator.

The analysis of power quality characteristics in high speed train through neutral section of catenary system (절연구간운행 고속철도차량 전력품질 특성 분석)

  • Hong, Hyun-Pyo;Choi, Eui-Seong;Lee, See-Bin;Lee, Hee-Soon
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.634-643
    • /
    • 2011
  • The neutral section was installed in order to prevent conflict with different phase angle source in electric railway catenary system. The speed of electric train reduced due to coasting operation by notch off when it passed the neutral section. And, the catenary wire was damaged and the accident might be happened because of the arc generation when the electric train passed the neutral section with notch off condition. The inrush current of main transformer installed tiling train is analyzed during the operation of MCB(main circuit break) passing through the neutral section. The instantaneous waveform of load current were analyzed in case of powering and regenerative braking. Inrush current waveform with run of AC railway train showed that inrush current waveform and harmonics, the inrush current generated from main transformer in train has bad effects on power quality problem. In order to reduce these inrush currents, the MCB is connected when the phase angle of voltage is 90 degree. This paper is to measure inrush current and harmonics in main transformer of high speed train in neutral section of electric railway. This measurement report is used to control minimum inrush current in algorithm and power phase angle.

  • PDF

A Three-Phase Line-Interactive UPS System to Eliminate the Inrush Current Phenomenon during Switching-in of an Auxiliary Load while Powering the Main Load

  • Bukhari, Syed Sabir Hussain;Ayub, Muhammad;Kwon, Byung-il
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1623-1630
    • /
    • 2018
  • Normally, various auxiliary loads are installed along with the main load in industrial applications. Usually, load transformers are used to convey such types of auxiliary loads. The transformers become energized when the loads are turned-on, consequently, high amplitude of inrush current appears at the output of the uninterrupted power supply (UPS) system. To mitigate these high current amplitudes, this manuscript suggests a three-phase line-interactive UPS system to counter the inrush current during the turning-on of the auxiliary load transformer while powering the main load by using a current controlled inverter. Experimental results of a laboratory-sized prototype are provided in the support of the proposed UPS system for validation.

Estimation of a circulating current of a three-phase Y-${\Delta}$ Transformer (Y-${\Delta}$ 변압기의 순환전류 추정방법)

  • Kang, Yong-Cheol;Lee, Mi-Sun;Lee, Byung-Eun;Jang, Sung-Il;Kim, Young-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.363-365
    • /
    • 2006
  • This paper proposes an estimation method for a circulating current of a Y-${\Delta}$ Transformer. The delta winding current can be decomposed into the two components i.e. a non-circulating component and a circulating component. The former can be estimated using the line currents. However, the latter can not be estimated directly using the line currents. A first order differential equation for the circulating current is derived by applying the Kirchhoff's voltage law on the loop of the delta side. The circulating current can be estimated by the solving the differential equation. The performance of the proposed algorithm is investigated under various conditions including magnetic inrush and over-excitation. The algorithm can estimate the circulating current very accurately even under magnetic inrush and over-excitation.

  • PDF