• Title/Summary/Keyword: Inquiry Learning

Search Result 641, Processing Time 0.034 seconds

An Analysis of the Scientific Problem Solving Strategies according to Knowledge Levels of the Gifted Students (영재학생들의 지식수준에 따른 과학적 문제해결 전략 분석)

  • Kim, Chunwoong;Chung, Jungin
    • Journal of Korean Elementary Science Education
    • /
    • v.38 no.1
    • /
    • pp.73-86
    • /
    • 2019
  • The purpose of this study is to investigate the characteristics of problem solving strategies that gifted students use in science inquiry problem. The subjects of the study are the notes and presentation materials that the 15 team of elementary and junior high school students have solved the problem. They are a team consisting of 27 elementary gifted and 29 middle gifted children who voluntarily selected topics related to dimple among the various inquiry themes. The analysis data are the observations of the subjects' inquiry process, the notes recorded in the inquiry process, and the results of the presentations. In this process, the knowledge related to dimple is classified into the declarative knowledge level and the process knowledge level, and the strategies used by the gifted students are divided into general strategy and supplementary strategy. The results of this study are as follows. First, as a result of categorizing gifted students into knowledge level, six types of AA, AB, BA, BB, BC, and CB were found among the 9 types of knowledge level. Therefore, gifted students did not have a high declarative knowledge level (AC type) or very low level of procedural knowledge level (CA type). Second, the general strategy that gifted students used to solve the dimple problem was using deductive reasoning, inductive reasoning, finding the rule, solving the problem in reverse, building similar problems, and guessing & reviewing strategies. The supplementary strategies used to solve the dimple problem was finding clues, recording important information, using tables and graphs, making tools, using pictures, and thinking experiment strategies. Third, the higher the knowledge level of gifted students, the more common type of strategies they use. In the case of supplementary strategy, it was not related to each type according to knowledge level. Knowledge-based learning related to problem situations can be helpful in understanding, interpreting, and representing problems. In a new problem situation, more problem solving strategies can be used to solve problems in various ways.

The Effect of Classes with Enhanced Science Process Skills on Inquiry Ability and Science Attitudes of Middle School Students (과학 탐구 기능을 강화한 수업이 중학생의 탐구 능력과 과학 태도에 미치는 효과)

  • Kim, Hyunry;Son, Junho
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • In a situation in which online classes were suddenly introduced due to COVID-19, there were many cases where learners did not properly learn science process skills that were not presented in the achievement standards for reasons such as reducing the number of class hours. It is difficult to expect positive science inquiry ability and science attitude from learners who have entered middle school without understanding the process skills. Therefore, in this study, the effect on science inquiry ability and science attitude was investigated by developing worksheets with enhanced process skills and applying it to learner-centered teaching linked online and offline. As a result, it was confirmed that there was a statistically significant positive difference between both. Based on this research, it is expected that students will pay attention to the process skills, which is the basis of science subjects, and continue to experience the process skills through learning-centered classes.

Development of Teaching Materials for the Nature of Science and Pilot Application to Scientifically Gifted Students (과학의 본성 지도자료 개발과 과학영재를 대상으로 한 시험적용)

  • Park, Jong-Won;Kim, Doo-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.2
    • /
    • pp.169-179
    • /
    • 2008
  • In this study, 46 teaching materials for understanding the nature of science (NOS) were developed based on the 42 statements describing the NOS. Each teaching material involves scientific knowledge and scientific inquiry skills as well as NOS statements. Teaching materials consist of students' learning worksheets and teachers' guides. Among the materials, 11 materials for understanding the nature of scientific thinking (NOST) were applied to 3 scientifically gifted students. As results, the degree of difficulty was appropriate and students showed interests in scientific thinking rather than new concepts or inquiry activities involved in the materials. It was expected that understating the NOST would be helpful for conducting scientific inquiry in more authentic way. And similarly to the Park's (2007) theoretical discussions about the relationship between the NOS and scientific creativity, students actually responded that undertrading the NOST could help their creativity. Therefore, it was expected that teaching the NOST would be plausible elements for teaching scientific creativity.

A Study on the Development of Science Textbooks for the Implementation of Flipped Learning (거꾸로 수업을 지원할 수 있는 과학교과서 모형 개발 연구)

  • Shin, Young-Joon;Ha, Ji-Hoon;Hong, Jun-Euy;Jhun, Young-Seok;Lee, Soo-Young;Park, Ji-Sun;Ji, Jae-Hwa;Lee, Soo-Ah;Moon, Hye-Sook;Lee, Sung-Hee
    • Journal of Science Education
    • /
    • v.40 no.1
    • /
    • pp.90-102
    • /
    • 2016
  • Flipped learning is generally designed to allow students to learn on their own in advance with the help of scaffolding material such as videos and text, and in the classroom, it is operated with the help of a teacher while the class is being learner-centered. For flipped learning, each of the teachers has to design the class, collect information, and prepare for scaffolding material, so they get to face a lot of difficulties spending much time to reorganize the curriculum and produce a video and so on. Accordingly, this researcher has developed flipped learning textbook models applicable to science class by analyzing Korean and overseas textbooks, conducting an in-depth interview to six science teachers practicing flipped learning, and also developing and applying the science textbook sample model. The elementary, middle, and high school science textbook models developed include not only the textbook-based model with no videos presented in advance but also the lecture-type model, experiment-based model, and inquiry and research-based model to realize flipped learning. This study is expected to present crucial implications to develop textbooks and science class as a class to perform learner-centered inquiry activity.

  • PDF

Geographical Metacognition in the Reading Maps Inquiry Activity (중학생의 '지도 읽기' 탐구활동에서 나타나는 지리적 메타인지)

  • Kang, Chang-Sook
    • Journal of the Korean association of regional geographers
    • /
    • v.11 no.2
    • /
    • pp.263-277
    • /
    • 2005
  • Since the 1980's, metacognition has been one of the core subjects in the studies on teaching-learning. There have been significant considerations about the metacognition in the reaching-learning become increasingly important in relation with learner's thinking. Though, metacognition has now become important concept used in learning process, there have not been sufficient researches in geographic education. The purpose of this parer is to define metacognition concept in geograpbic education. First, the concept of metacognition in geograpbic education, alike in the other education, can be classified as metacognitive knowledge and metacognitive function. Metacognitive knowledge can be categorized as knowledge about self, task, and strategy. Metacognitive function can be categorized as function about monitoring, evaluating and controling. Next, based on geographical metacognition concept, this paper is researched the characteristics of geographical metacognition in the students' reading maps inquiry activity.

  • PDF

Effects of 5E Learning-Cycle Model on Science Academic Achievements, Science Process Skill and Scientific Attitude of Elementary School Students (5E 순환학습이 초등학생의 과학 학업 성취도와 탐구 능력 및 과학적 태도에 미치는 효과)

  • Dong, Hyo-Kwan;Song, Mi-Young;Shin, Young-Joon
    • Journal of Korean Elementary Science Education
    • /
    • v.29 no.4
    • /
    • pp.567-575
    • /
    • 2010
  • The purpose of this study is to investigate the effectiveness of academic achievements, science process skill and scientific attitude. The subjects of this study were 68 fourth-grade elementary school students who were 33 students for the 5E learning cycle instruction and 35 students for traditional instruction. The control group was taught with traditional teaching method, while the experimental group was taught 'the change to the volume of material due to heat' unit of 4th grade with the developed learning cycle model. The results were as fellows: First, the learning cycle instruction is more effective for understanding of a concept related to the change to the volume of material due to heat. Second, the learning cycle model seems more effective for the expansion of both scientific inquiry ability and scientific attitude.

  • PDF

The Effects of Learning Based Flow Theory on Scientific Achievement and Attitude toward Science (몰입에 기반한 학습이 과학 학업성취도 및 과학에 대한 태도에 미치는 영향)

  • Bae, Hoon;Yoo, Pyoung-Kil
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.5 no.3
    • /
    • pp.225-234
    • /
    • 2012
  • The Purpose of this study is searching the effect of the flow level increasing by using flow learning on scientific achievement and attitude toward science in 4rd grade elementary school student's scientific learning factors, and the better way to approach scientific institude than now in used. Participants included 52 elementary school students. For this study, two classes were divided into experimental class and control class. The control class takes a regular instructions and the experimental class takes a flow learning instructions. Two chapter were selected, 'Plant's World' and 'Fossil and Rock', for this study. Students were treated for 18 hours. The results were as follows: First, flow learning related program about plant's world, fossil and rock is increasing 4rd grade elementary school students' flow level in science class. Second, students are not increasing their scientific achievement according to increasing their flow level. Third, students are not increasing their attitude toward science according to increasing their flow level. But in attitude toward scientific inquiry, adoption of attitude toward science and preference of job related science subordinated, students are increasing subordinate factors of attitude toward science.

The Identification and Comparison of Science Teaching Models and Development of Appropriate Science Teaching Models by Types of Contents and Activities (과학수업모형의 비교 분석 및 내용과 활동 유형에 따른 적정 과학수업모형의 고안)

  • Chung, Wan-Ho;Kwon, Jae-Sool;Choi, Byung-Soon;Jeong, Jin-Woo;Kim, Hyo-Nam;Hur, Myung
    • Journal of The Korean Association For Science Education
    • /
    • v.16 no.1
    • /
    • pp.13-34
    • /
    • 1996
  • The purpose of this study is to develop appropriate science teaching models which can be applied effectively to relevant situations. Five science teaching models; cognitive conflict teaching models, generative teaching model, learning cycle teaching model, hypothesis verification teaching model and discovery teaching model, were identified from the existing models. The teaching models were modified and in primary and secondary students using a nonequivalent pretest-posttest control group design. Major findings of this study were as follows: 1. For teaching science concepts, three teaching models were found more effective; cognitive conflict teaching model, generative teaching model and discovery teaching model. 2. For teaching inquiry skills, two teaching models were found more effective; learning cycle teaching model and hypothesis verification teaching model. 3. For teaching scientific attitudes, two teaching models were found more effective; learning cycle teaching models and discovery teaching model. Each teaching model requires specific learning environment. It is strongly suggested that teachers should select a suitable teaching model carefully after evaluating the learning environment including teacher and student variables, learning objectives and curricular materials.

  • PDF

Effects of Eco-Friendly School Project Activity on Middle School Students' Environmental Awareness (친환경학교 가꾸기 프로젝트 활동이 중학생의 환경 인식에 미치는 영향)

  • Son, Mi-Hee;Park, Hye-Gyeong;Cheong, Cheol
    • Hwankyungkyoyuk
    • /
    • v.24 no.3
    • /
    • pp.34-43
    • /
    • 2011
  • Project-based learning is an innovative approach to learning that teaches a multitude of strategies critical for success in the twenty-first century. Students drive their own learning through inquiry activity, as well as work collaboratively to research and create projects that reflect their knowledge. The purpose of this study was to investigate the effects of eco-friendly school project activity which is applied from one of project-based learning approach on learning outcomes of students in ninth-grade environment course in middle school. The participants were given a questionnaire before and after the environmental project activities. In solving the school environment issues themselves, students have practiced invaluable problem solving skills. This study indicates that school students' awareness about the environment has positively changed by experiencing the eco-friendly school project. In addition, this project affects students' variety of environmental awareness. This project could be applied to school environmental education programs and to environment lessons, developmental activities or club activities for a positive impact on students' environmental awareness.

  • PDF

Undergraduate Mathematics Enhanced With Graphing Technology

  • Rosihan M. Ali;Kee, Kor-Liew
    • Research in Mathematical Education
    • /
    • v.8 no.1
    • /
    • pp.39-58
    • /
    • 2004
  • The School of Mathematical Sciences at University Sains Malaysia has offered a laboratory course on the integration of hand-held technology into the teaching and learning of mathematics since the beginning of the 2001/2002 academic year. This inquiry-based course highlights the explorations and application of mathematics in a data rich modeling environment. In addition, the course addresses several issues related to the effective integration of such technology into the mathematics curriculum. This paper discusses the appropriate use of graphing technology to present mathematical concepts and to support student's understanding in a student-centered learning environment, shares knowledge on the new mathematics that was made possible by hand-held technology, and summarizes student reactions to this innovative learning mode.

  • PDF