• Title/Summary/Keyword: Input-series and output-parallel

Search Result 69, Processing Time 0.022 seconds

A New Phase Shift PWM Parallel-input/series-output Modularized Dual Converter (새로운 위상전이 병렬입력/직렬출력 모듈화를 적용한 듀얼 컨버터)

  • 노정욱
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.270-273
    • /
    • 2000
  • A new phase shift PWM parallel-input/series-output modularized dual converter is proposed in this paper. This converter is operated with a fixed duty ratio and its output voltage is regulated by phase shift between each module. Since the operating duty ratio of each module is fixed it is sufficient to implement a simple open loop drive circuitry for each module and the cost of total system can be much reduced. The operation of the converter is analyzed in this paper and verified by computer simulation.

  • PDF

The study on the efficient Identification Model of Nonlinear dynamical system using Neural Networks (신경회로망을 이용한 비선형 동적인 시스템의 효과적인 인식모델에 관한 연구)

  • 강동우;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.233-242
    • /
    • 1995
  • In this paper, we introduce the identification model of dynamic system using the neural networks, We propose two identification models. The output of the parallel identification model is a linear combination of its past values as well as those of the input. The series-parallel model is a linear combination of the past values in the input and output of the plant. To generate stable adaptive laws, we prove that the series-parallel model is found to be proferable.

  • PDF

Frequency Controlled Series Resonant Converter System for Power Supply of Communication Station (통신 기지국 전원용 주파수 제어 직렬 공진형 컨버터 시스템)

  • 지준근;임영하
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.4
    • /
    • pp.323-328
    • /
    • 2003
  • In this paper new control strategy of series resonant converter system for power supply of communication station is suggested. Frequency controlled series resonant converter system is robust to load variations because it is POSR(Parallel Output Series Resonant: POSR) type. And it provides stable output voltage by changing switching frequency to input voltage variations. Firstly, operation analysis about suggested series resonant converter system was carried. Then simulations using ACSL(Advanced Continuous Simulation Langage) and experiments to actual system were carried to prove characteristics of suggested system.

  • PDF

10KVA Series-Parallel compensated UPS (10KVA 급 직병렬 보상형 무정전 전원 장치)

  • Jeon, Seong-Jeub;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1083-1086
    • /
    • 2000
  • In this paper a development of 10KVA series-parallel compensated UPS is shown, which has high input power factor and sinusoidal output voltage regulation capability. Compared to conventional cascaded UPS, the size can be reduced significantly with high quality input and output waveforms. The front converter and the main inverter can be considered decoupled, hence the front converter and the main inverter can be designed independent of each other. In this paper, analysis and experimental results for an 10 KVA prototype are presented.

  • PDF

A Fast-Decoupled Algorithm for Time-Domain Simulation of Input-Series-Output-Parallel Connected 2-Switch Forward Converter (직렬입력-병렬출력 연결된 2-스위치 포워드 컨버터의 시간 영역 시뮬레이션을 위한 고속 분리 알고리즘)

  • Kim, Marn-Go
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.64-70
    • /
    • 2002
  • A fast decoupled algorithm for time domain simulation of power electronics circuits is presented. The circuits can be arbitrarily configured and can incorporate feedback amplifier circuits. This simulation algorithm is performed for the input series output parallel connected 2 switch forward converter. Steady state and large signal transient responses due to a step load change are simulated. The simulation results are verified through experiments.

  • PDF

A Fast Discrete-Time-Domain Simulation for the Input- Series -Output-Parallel Connected 2-Switch Forward Converter (직렬입력-병렬출력 연결된 2-스위치 포워드 컨버터에 대한 이산 시간 영옌 고속 시뮬레이션)

  • Kim Marn-Go
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.533-537
    • /
    • 2002
  • A fast time domain modeling and simulation is performed for the input-series-output-parallel connected 2-switch forward converter Steady-state and large-signal transient responses due to a step load change are simulated. The simulation results are verified through experiments.

  • PDF

Control of Input Series Output Parallel Connected DC-DC Converters

  • Natarajan, Sirukarumbur Pandurangan;Anandhi, Thangavel Saroja
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.265-270
    • /
    • 2007
  • Equal rating DC-DC converter modules can be connected in series at the input for circuits requiring higher input voltages and in parallel at the output for circuits requiring higher output currents. Since the converter modules may not be practically identical, closed loop control has to ensure that each module equally shares the total input voltage and the load current. A control scheme consisting of a common output voltage loop, individual inner current loops and individual input voltage loops have been designed in this work to achieve input voltage and load current sharing as well as load voltage regulation under supply and load disturbances. The output voltage loop provides the basic reference for the inner current loops, which are also modified by the respective input voltage loops. The average of the converter input voltages, which is dynamically varying, is chosen as the reference for input voltage loops. This choice of reference eliminates interaction among different control loops. Type II compensators and Fuzzy Logic Controllers (FLCs) are designed and compared through MATLAB based simulation and FLC is found to be satisfactory. Hence TMS320F2407A DSP based FLC is implemented and the results are presented which prove the superiority of the FLC developed for this research.

A Single Switched Series Element of Series-Parallel Compensated UPS (직병렬 보상형 무정전 전원장치의 단일 스위치 직렬 요소)

  • 이인우;박진형;전성즙
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.106-109
    • /
    • 1999
  • A single-switched series element for series-parallel compensated UPS is proposed. The proposed series element can handle only unidirectional power and the input voltage must be higher than the output voltage. But it is very useful when DC-link voltage is low and isolation transformer is need for output stage since only one active switch is used.

  • PDF

Interleaved High Step-Up Boost Converter

  • Ma, Penghui;Liang, Wenjuan;Chen, Hao;Zhang, Yubo;Hu, Xuefeng
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.665-675
    • /
    • 2019
  • Renewable energy based on photovoltaic systems is beginning to play an important role to supply power to remote areas all over the world. Owing to the lower output voltage of photovoltaic arrays, high gain DC-DC converters with a high efficiency are required in practice. This paper presents a novel interleaved DC-DC boost converter with a high voltage gain, where the input terminal is interlaced in parallel and the output terminal is staggered in series (IPOSB). The IPOSB configuration can reduce input current ripples because two inductors are interlaced in parallel. The double output capacitors are charged in staggered parallel and discharged in series for the load. Therefore, IPOSB can attain a high step-up conversion and a lower output voltage ripple. In addtion, the output voltage can be automatically divided by two capacitors, without the need for extra sharing control methods. At the same time, the voltage stress of the power devices is lowered. The inrush current problem of capacitors is restrained by the inductor when compared with high gain converters with a switching-capacitor structure. The working principle and steady-state characteristics of the converter are analyzed in detail. The correctness of the theoretical analysis is verified by experimental results.

Interleaved ZVS Resonant Converter with a Parallel-Series Connection

  • Lin, Bor-Ren;Shen, Sin-Jhih
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.528-537
    • /
    • 2012
  • This paper presents an interleaved resonant converter with a parallel-series transformer connection in order to achieve ripple current reduction at the output capacitor, zero voltage turn-on for the active switches, zero current turn-off for the rectifier diodes, less voltage stress on the rectifier diodes, and less current stress on the transformer primary windings. The primary windings of the two transformers are connected in parallel in order to share the input current and to reduce the root-mean-square (rms) current on the primary windings. The secondary windings of the two transformers are connected in series in order to ensure that the transformer primary currents are balanced. A full-wave diode rectifier is used at the output side to clamp the voltage stress of the rectifier diode at the output voltage. Two circuit modules are operated with the interleaved PWM scheme so that the input and output ripple currents are reduced. Based on the resonant behavior, all of the active switches are turned on under zero voltage switching (ZVS), and the rectifier diodes are turned off under zero current switching (ZCS) if the operating switching frequency is less than the series resonant frequency. Finally, experiments with a 1kW prototype are described to verify the effectiveness of the proposed converter.