Purpose - This study examined the effect of tariff cuts on productivity in Korea's manufacturing industries and the effect of initial productivity level before tariff cuts on productivity improvement after tariff cuts. We also attempted to identify whether import-driven or export-driven factors are more important for productivity improvement, especially in low productivity industries. Design/methodology - Since tariff reduction is a policy decision that can affect cross-industry, its impact is spread across all industries beyond the scope of a single firm through the input and output network of industry structure. Accordingly, we proposed a new method to measure the change in productivity to reflect the impact of tariff cuts across industries. Through an Armington CGE analysis, changes in endogenous variables can be directly measured after the exogenous shock of tariff reduction, and the amount of movements in productivity triggered by tariff cuts can also be calculated. We can thus assess the effectiveness of exogenous policy, such as tariff cuts, through the difference between the benchmark and counterfactual values of endogenous variables. Findings - This study confirmed that tariff reduction positively affected productivity improvement in Korea's manufacturing industries. It also confirmed that productivity gains occur in Korea's leading export industries. Finally, greater productivity gains were recorded in the group with additional high-export-share or high-import-share conditions for low productivity industries. These results are, in a limited sense, consistent with the existing studies that emphasize the importance of exports and imports on productivity improvement, especially for low productivity industries. Originality/value - The results of our experiments are different from those of non-CGE studies, which measure the industry-level change in productivity with dummy coefficients, in terms of directly calculating the amount of change in productivity. In addition, we propose that the Armington CGE model is more appropriate than the Melitz CGE model to directly measure the productivity after tariff cuts. This is because the Melitz CGE model assumes the given specific productivity density, which does not change after an overall drop of tariffs. To the best of our knowledge, this approach to directly calculating productivity by reflecting the impact of tariff reduction across industries through CGE analysis, is unprecedented in this literature.
국제해사기구(IMO)의 환경규제 강화에 따라 친환경 선박의 수요가 증가하고 있으며, 특히 LNG 추진선박이 조명받고 있다. 이에 따라 항만의 경쟁력 확보 및 LNG 추진선박의 활성화를 위해 LNG 벙커링 인프라 구축이 필요한 시점이다. 그러나 현재 관련 인프라를 구축한 국내 항만은 전무한 실정이며, 선행연구는 LNG 벙커링 산업 차원에서의 경제적 효과만을 중심으로 진행되었다. 이에 본 연구에서는 2015년 지역연관산업표를 활용하여 부산항에 LNG 벙커링 인프라를 구축할 경우 지역 내 경제적 파급효과에 대해 살펴보았다. 2023년 기준 부산항에 LNG 벙커링 인프라를 구축할 경우, 예상 사업비는 2조 1,091억 원이었다. 부문별 평균 생산유발계수는 1.223, 평균 부가가치유발계수는 0.372, 평균 취업유발계수는 7.58로 분석되었다.
In these days, the interest on medical industry is increasing around the world. This paper attempts to estimate the economic effects of the medical and measuring instrument industry through the Input-Output Analysis. Especially, 78*78 Sector Tables were used as the first analysis tool. So then, 79*79 Sector Tables adjusted were used for that industry. The main analysis tools of this study are comparing and analyzing backward and forward linkage effect, the induced effect of the self industry and other industries and the induced coefficients such as products, value-added, employee's pay, sales surplus, employment. According to the result of analysis, the medical and measuring instrument industry has great economic impacts which affects the major macroeconomic factors such as production and backward linkage effect. And the induced effects of the self medical and measuring instrument industry are significant compared to other industries in aspects of production, employee's pay and sales surplus.
This paper is concerned with a computational method for recovering a crack shape of steam generator tubes of nuclear plants. Problems on the shape identification are discussed arising in the characterization of a structural defect in a conductor using data of eddy current inspection. A surface defect on the generator tube ran be detected as a probe impedance trajectory by scanning a pancake type coil. First, a mathematical model of the inspection process is derived from the Maxwell's equation. Second, the input and output relation is given by the approximate model by virtue of the hybrid use of the finite element and boundary element method. In that model, the crack shape is characterized by the unknown coefficients of the B-spline function which approximates the crack shape geometry. Finally, a parameter estimation technique is proposed for recovering the crack shape using data from the probe coil. The computational experiments were successfully tested with the laboratory data.
This paper tries to measure the spill-over effect of the production and investment of telecommunication service industry (hereafter telecommunication industry), using the most recent data of 2003 input-output tables. The results are summarized as follows. First, the industries which have the biggest spill-over effect from the production of telecommunication industry is miscellaneous business service (including the sale commission of telecommunication service), other engineering services (including royalty), and business consumption. Second, the production of telecommunication industry induces more value-added, and less production, less import, and less employment than related industries such as radio and television equipment, communications and broadcasting equipment, and computer and peripheral equipment. Third, while the investment of telecommunication service amounts to 15% of its production, the effect of the investment on production, value-added, consumption, and employment reaches 70% of that of its production. The policy implication of this paper is that the telecommunication industry contributes to overall economy mainly through its investment.
Traditional prediction models have been developed with a fixed equation form based on the limited number of data and parameters. If new data is quite different from original data, then the model should update not only its coefficients but also its equation form. However, artificial neural network (ANN) does not need a specific equation form. Instead of that, it needs enough input-output data. Also, it can continuously re-train the new data, so that it can conveniently adapt to new data. Therefore, the purpose of this paper is to develop the I-PreConS (Intelligent system for PREdiction of CONcrete Strength using ANN) that provides in-place strength information of the concrete to facilitate concrete form removal and scheduling for construction.
Traditional prediction models have been developed with a fixed equation from based on the limited number of data and parameters. If new data is quite different from original data, then the model should update not only its coefficients but also its equation form. However, artificial neural network dose not need a specific equation form. Instead of that, it needs enough input-output data. Also, it can continuously re-train the new data, so that it can conveniently adapt to new data. Therefore, the purpose of this study is to verify faith and application of prediction system of concrete strength using artificial neural networks through mock-up test.
In these days, the interest on health industry is increasing around the world. This paper attempts to estimate the economic effects of the Cosmetic Industrydusing the Input-Output Analysis. Especially, 78*78 Sector Tables were used as the first analysis tool. So then, 79*79 Sector Tables adjusted were used for that industry. The main analysis tools of this study are comparing and analyzing backward and forward linkage effects, the induced effects of the self industry and other industries and the induced coefficients such as product, value-added, job and employment. According to the result of analysis, the cosmetic industry has great economic impacts which affects the major macroeconomic factors such as product, value added and backward linkage effect. And the induced effects of the self cosmetic industry are significant compared to other industries in aspects of product, value-added, and employment.
In this paper, we design the Multi-FNN(Fuzzy-Neural Networks) using HCM Method. The proposed Multi-FNN uses simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rules. Also, We use HCM(Hard C-Means) method of clustering technique for improvement of output performance from pre-processing of input data. The parameters such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. We use the training and testing data set to obtain a balance between the approximation and the generalization of our model. Several numerical examples are used to evaluate the performance of the our model. From the results, we can obtain higher accuracy and feasibility than any other works presented previously.
In this paper, the Multi-FNNs(Fuzzy-Neural Networks) architecture is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNNs architecture uses simplified inference and linear inference as fuzzy inference method and error back propagation algorithm as learning rules. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNNs according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNNs model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model we use the time series data for gas furnace and the NOx emission process data of gas turbine power plant.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.