• Title/Summary/Keyword: Input reflection coefficient

Search Result 88, Processing Time 0.027 seconds

Compact MIMO Antenna with Wide-Band Isolation and Ground Mode Resonance for Smart Glasses (그라운드 모드의 공진을 이용한 광대역 격리도를 가지는 스마트 안경용 소형 MIMO 안테나)

  • Ryu, Jongin;Kim, Hyeongdong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.817-820
    • /
    • 2018
  • In this letter, a compact multiple-input multiple-output(MIMO) antenna design for a 2.4 GHz wireless local area network(WLAN) band is proposed for use in smart glasses. To miniaturize the MIMO antenna system, a ground plane is employed within the antenna and a T-shaped ground is proposed. To achieve wideband isolation, dual resonance is formed by the ground mode. One resonance is created by the T-shaped ground and the second resonance is created by adding a slot and a capacitor between the two feed lines. The measurements show that the reflection coefficient characteristic was less than -5.1 dB, whereas the isolation obtained was less than -20 dB. The diversity performance was evaluated using the measured two-dimensional radiation patterns, and the envelope correlation coefficient(ECC) values achieved in the target band(2.4~2.5 GHz) were less than 0.1.

Design of a Dual-Band Square-Waveguide Iris Polarizer (이중대역 정사각형 도파관 아이리스 편파기 설계)

  • Hwang Soon-Mi;Ko Han-Woong;Park Dong-Hee;Yun So-Hyeun;Uhm Man-Seok;Ahn Bierng-Chearl
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.113-119
    • /
    • 2005
  • In this paper, we present methods for designing a square-waveguide iris polarizer operating at dual frequency bands. Methods are presented fur determining the number of ires, iris thickness, iris height and spacing between ires so that the input reflection is low and the axial-ratio bandwidth is optimized at two frequency bands. As an example of the application of the proposed method, a polarizer operating at 21 GHz and 31 GHz bands is designed, fabricated and tested. The fabricated polarizer shows a reflection coefficient less than -35 dB and an axial ratio less than 0.3 dB at $20.8\~21.2\;GHz$ and $30.6\~31.0\;GHz$.

Improvement of Reverse-time Migration using Homogenization of Acoustic Impedance (음향 임피던스 균질화를 이용한 거꿀시간 참반사보정 성능개선)

  • Lee, Gang Hoon;Pyun, Sukjoon;Park, Yunhui;Cheong, Snons
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.2
    • /
    • pp.76-83
    • /
    • 2016
  • Migration image can be distorted due to reflected waves in the source and receiver wavefields when discontinuities of input velocity model exist in seismic imaging. To remove reflected waves coming from layer interfaces, it is a common practice to smooth the velocity model for migration. If the velocity model is smoothed, however, the subsurface image can be distorted because the velocity changes around interfaces. In this paper, we attempt to minimize the distortion by reducing reflection energy in the source and receiver wavefields through acoustic impedance homogenization. To make acoustic impedance constant, we define fake density model and use it for migration. When the acoustic impedance is constant over all layers, the reflection coefficient at normal incidence becomes zero and the minimized reflection energy results in the improvement of migration result. To verify our algorithm, we implement the reverse-time migration using cell-based finite-difference method. Through numerical examples, we can note that the migration image is improved at the layer interfaces with high velocity contrast, and it shows the marked improvement particularly in the shallow part.

Closely Spaced Two-Element Folded-Dipole-Driven Quasi-Yagi Array

  • Ta, Son Xuat;Kang, Sang-Gu;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.254-259
    • /
    • 2012
  • This paper presents a closely spaced two-element folded-dipole-driven quasi-Yagi array with low mutual coupling between adjacent elements. The antenna utilizes a T-junction power divider as the feeding network, with an input impedance of $50{\Omega}$. A microstrip-stub is added to the ground plane in the middle of the two elements to improve the mutual coupling characteristics. The folded dipole driver is connected to a $50{\Omega}$ microstrip line via a broadband microstrip-to-coplanar stripline transition with a quarter radial stub. A mutual coupling of less than -22 dB is measured between two folded-dipole-driven quasi-Yagi antennas with a center-to-center spacing of 30 mm ($0.55{\lambda}_0$ at 5.5 GHz). The proposed quasi-Yagi array yields a measured bandwidth of 4.75~6.43 GHz for the -10 dB reflection coefficient and a gain of 6.14~7.12 dBi within the bandwidth range.

Design of a High Gain-Broadband MMIC Distributed Amplifier (고이득-광대역 MMIC Distributed Amplifier의 설계)

  • Kim, S.C.;An, D.;Cho, S.K.;Yoon, J.S.;Rhee, J.K.
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.84-87
    • /
    • 2000
  • In this paper, a high gain-broad bandwidth MMIC distributed amplifier was designed using cascaded single section distributed amplifier configuration. The PHEMT for this studies was fabricated at our lab The PHEMT has a 0.2 $\mu\textrm{m}$ gate length. a 80 $\mu\textrm{m}$ unit gate width and 4 gate fingers. A designed MMIC amplifier have higher S$\sub$21/ gain than the common distributed amplifier using the same number of active devices. From the simulated result, we obtained that the S$\sub$21/ gain of DC ∼ 20 GHz bandwidth was 15.6 dB and flatness was ${\pm}$0.9 dB, and input and output reflection coefficient were lower than -8 dB. The simulated gain shows an improvement 7.3 dB compared with those of conventional distributed amplifier. And the chip size is 2.0 ${\times}$ 1.2 $\textrm{mm}^2$.

  • PDF

Design Optimization of Composite Radar Absorbing Structures to Improve Stealth Performance

  • Jang, Byungwook;Kim, Myungjun;Park, Jungsun;Lee, Sooyong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.20-28
    • /
    • 2016
  • In this study, an efficient method of designing laminate composite radar absorbing structures (RAS) is proposed with consideration given to the structural shape so as to improve aircraft stealth performance. The calculation of the radar cross section (RCS) should be decreased to enhance the efficiency of the stochastic optimization when designing an RAS. In the proposed method, RAS are optimized to match up the input impedance of the minimal RCS, which is obtained by using physical optics and the transmission line theory. Single and double layer dielectric RAS for aircraft wings are employed as numerical examples and designed using the proposed method, RCS minimization and reflection coefficient minimization. The availability of the proposed method is assessed by comparing the similarity of the results and computation time with other design methods. According to the results, the proposed method produces the same results as the stochastic optimization, which adopts the RCS as the objective function, and can improve RAS design efficiency by reducing the number of RCS analyses.

Analysis of Stepped T-Junction using Improved Three Plane Mode Matching Method and Its Application (개선된 Three Plane Mode Matching Method를 이용한 계단형 T-접합의 해석과 응용)

  • 손영일;김상태;황충선;백락준;신철재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6B
    • /
    • pp.1123-1133
    • /
    • 1999
  • In this paper, we applied mode matching and generalized scattering matrix methods to three plane mode matching method for analyzing T-junctions. We calculated all scattering matrix elements by only three times and considered several incident modes. By proposed analysis method, we could analyze various waveguide discontinuity structures more conveniently and accurately. Using the stepped T-junction, we would be able to reduce the reflection coefficient at an input port and use it over wider band. Simulated and HFSS data of T-junctions are compared, showing good agreement for scattering matrix elements. Considering step numbers, height, length and position, we extracted for optimum dimensions and equivalent circuit parameters.

  • PDF

Design of Extremely Wideband Printed Semi-circular-shaped Dipole Antenna (초광대역 인쇄형 반원모양 다이폴 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig;Park, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2003-2008
    • /
    • 2013
  • In this paper, a design method for a ultra-wideband printed semi-circular-shaped dipole antenna operating in the band of 1-15 GHz is studied. The effects of the gap between the two arms of the semi-circular-shaped dipole and the radius of the semi-circle on the input reflection coefficient and gain characteristics are examined to obtain the optimal design parameters. The optimized printed semi-circular-shaped dipole antenna is fabricated on an FR4 substrate and the experimental results show that the antenna has a desired extremely wideband characteristic with a frequency band of 1-15 GHz (175%) for a VSWR < 2.

Design of High Gain array antenna for 70GHz band Short Range Radar Sensor (70GHz대역 근거리레이다 센서용 고이득 배열안테나의 설계)

  • Kim, Ju-suk;Kim, Gue-chol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.402-403
    • /
    • 2018
  • 70GHz-band high gain array antenna is developed for automotive short range radar sensor. In Short-rangeradar, the gain must be high in order to increase the resolution, and the angle width must be set to secure the field of view(Fov). The proposed antenna operates at 76~81GHz and satisfies angle width $60^{\circ}$, antenna gain 15dB and the input reflection coefficient of less than -10dB within the operating frequency. Wave guide WR-10 was used to measure the antenna and results similar to the simulation results were obtained.

  • PDF

Design of Cellular Power Amplifier Using a SifSiGe HBT

  • Hyoung, Chang-Hee;Klm, Nam-Young;Han, Tae-Hyeon;Lee, Soo-Min;Cho, Deok-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.236-238
    • /
    • 1997
  • A cellular power amplifier using an APCVD(Atmospheric Pressure Chemical Vapor Deposition)-grown SiGe base HBT of ETRI has been designed with a linear simulation CAD. The Si/SiGe HBT with an emitter area of 2$\times$8${\mu}{\textrm}{m}$$^2$typically has a cutoff frequency(f$_{T}$) of 7.0 GHz and a maximum oscillation frequency(f$_{max}$) of 16.1 GHz with a pad de-embedding A packaged power Si/SiGe HBT with an emitter area of 2$\times$8$\times$80${\mu}{\textrm}{m}$$^2$typically shows a f$_{T}$ of 4.7 GHz and a f$_{max}$ of 7.1 GHz at a collector current (Ic) of 115 mA. The power amplifier exhibits a Forward transmission coefficient(S21) of 13.5 dB, an input and an output reflection coefficients of -42 dB and -45 dB respectively. Up to now the III-V compound semiconductor devices hale dominated microwave applications, however a rapid progress in Si-based technology make the advent of the Si/SiGe HBT which is promising in low to even higher microwave range because of lower cost and relatively higher reproducibility of a Si-based process.ess.ess.

  • PDF