• Title/Summary/Keyword: Input pattern

Search Result 1,281, Processing Time 0.031 seconds

Input Pattern Vector Extraction and Pattern Recognition of Taste using fMRI (fMRI를 이용한 맛의 입력패턴벡터 추출 및 패턴인식)

  • Lee, Sun-Yeob;Lee, Yong-Gu;Kim, Dong-Ki
    • Journal of radiological science and technology
    • /
    • v.30 no.4
    • /
    • pp.419-426
    • /
    • 2007
  • In this paper, the input pattern vectors are extracted and the learning algorithms is designed to recognize taste(bitter, sweet, sour and salty) pattern vectors. The signal intensity of taste are used to compose the input pattern vectors. The SOM(Self Organizing Maps) algorithm for taste pattern recognition is used to learn initial reference vectors and the ot-star learning algorithm is used to determine the class of the output neurons of the sunclass layer. The weights of the proposed algorithm which is between the input layer and the subclass layer can be learned to determine initial reference vectors by using SOM algorithm and to learn reference vectors by using LVQ(Learning Vector Quantization) algorithm. The pattern vectors are classified into subclasses by neurons in the subclass layer, and the weights between subclass layer and output layer are learned to classify the classified subclass, which is enclosed a class. To classify the pattern vectors, the proposed algorithm is simulated with ones of the conventional LVQ, and it is confirmed that the proposed learning method is more successful classification than the conventional LVQ.

  • PDF

Input Pattern Vector Extraction and Pattern Recognition of EEG (뇌파의 입력패턴벡터 추출 및 패턴인식)

  • Lee, Yong-Gu;Lee, Sun-Yeob;Choi, Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.95-103
    • /
    • 2006
  • In this paper, the input pattern vectors are extracted and the learning algorithms is designed to recognize EEG pattern vectors. The frequency and amplitude of alpha rhythms and beta rhythms are used to compose the input pattern vectors. And the algorithm for EEG pattern recognition is used SOM to learn initial reference vectors and out-star learning algorithm to determine the class of the output neurons of the subclass layer. The weights of the proposed algorithm which is between the input layer and the subclass layer can be learned to determine initial reference vectors by using SOM algorithm and to learn reference vectors by using LVQ algorithm, and pattern vectors is classified into subclasses by neurons which is being in the subclass layer, and the weights between subclass layer and output layer is learned to classify the classified subclass, which is enclosed a class. To classify the pattern vectors of EEG, the proposed algorithm is simulated with ones of the conventional LVQ, and it was a confirmation that the proposed learning method is more successful classification than the conventional LVQ.

  • PDF

Spectral Domain Analysis of Input Impedance and Radiation Pattern in Rectangular Microstrip Patch Antenna on Anisotropy Substrates with Airgap (공기 갭을 갖는 이방성 매질 위의 사각 마이크로스트립 패치 안테나의 입력 임피던스와 방사패턴에 대한파수 영역 해석)

  • 윤중한;곽경섭
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.5
    • /
    • pp.187-196
    • /
    • 2003
  • Effects of Airgap and anisotropy substrate on input impedance and radiation pattern of rectangular microstrip patch antenna are studied in terms of an integral equation formulation. The input impedance and radiation pattern of microstrip patch antenna is investigated by using Galerkin's moment method in solving the integral equation. Sinusoidal functions are selected as basis functions, which resemble in the actual standing wave on the Patch. From the numerical results, the variation of input impedance and radiation patterns in the variation of air gap thickness, anisotropy ratio of substrate, and relative permittivity of anisotropy substrate are presented.

A Study on Input Pattern Generation of Neural-Networks for Character Recognition (문자인식 시스템을 위한 신경망 입력패턴 생성에 관한 연구)

  • Shin, Myong-Jun;Kim, Sung-Jong;Son, Young-Ik
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.129-131
    • /
    • 2006
  • The performances of neural network systems mainly depend on the kind and the number of input patterns for its training. Hence, the kind of input patterns as well as its number is very important for the character recognition system using back-propagation network. The more input patters are used, the better the system recognizes various characters. However, training is not always successful as the number of input patters increases. Moreover, there exists a limit to consider many input patterns of the recognition system for cursive script characters. In this paper we present a new character recognition system using the back-propagation neural networks. By using an additional neural network, an input pattern generation method is provided for increasing the recognition ratio and a successful training. We firstly introduce the structure of the proposed system. Then, the character recognition system is investigated through some experiments.

  • PDF

A Syntactic Structure Analysis of Hangul Using the Primitive Transformation (원소 변환을 이용한 한글 패턴의 구조 분석)

  • 강현철;최동혁;이완주;박규태
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.12
    • /
    • pp.1956-1964
    • /
    • 1989
  • In this paper, a new method of Hangul recognition is proposed to solve the problems of misrecognition owing to the contacts of FCEs (Fundamental Character Elements) in a Hangul pattern. Structures of FCFs are represented with PAG(Programmed Array Grammar) to recognize an input pattern on 2-D. array of pels., and the unnecessary deformation of the conventional approach can be eliminated by using PEACE parsing which extracts primitives and computes attributes in the course of analyzing the structure of an input pattern. Also, primitive transformation at contacts can afford to confirm all the possible structures of an input pattern and solve the problem of misrecognition owing to the contacts of FCEs. The recognition rate of proposed method for printed Hangul characters shows 96.2% for 1978 Gothic-letters and 92.0% for 1920 Myng-style-letters, respectively.

  • PDF

Fuzzy Neural Newtork Pattern Classifier

  • Kim, Dae-Su;Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.1 no.3
    • /
    • pp.4-19
    • /
    • 1991
  • In this paper, we propose a fuzzy neural network pattern classifier utilizing fuzzy information. This system works without any a priori information about the number of clusters or cluster centers. It classifies each input according to the distance between the weights and the normalized input using Bezdek's [1] fuzzy membership value equation. This model returns the correct membership value for each input vector and find several cluster centers. Some experimental studies of comparison with other algorithms will be presented for sample data sets.

  • PDF

Design of Regression Model and Pattern Classifier by Using Principal Component Analysis (주성분 분석법을 이용한 회귀다항식 기반 모델 및 패턴 분류기 설계)

  • Roh, Seok-Beom;Lee, Dong-Yoon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.594-600
    • /
    • 2017
  • The new design methodology of prediction model and pattern classification, which is based on the dimension reduction algorithm called principal component analysis, is introduced in this paper. Principal component analysis is one of dimension reduction techniques which are used to reduce the dimension of the input space and extract some good features from the original input variables. The extracted input variables are applied to the prediction model and pattern classifier as the input variables. The introduced prediction model and pattern classifier are based on the very simple regression which is the key point of the paper. The structural simplicity of the prediction model and pattern classifier leads to reducing the over-fitting problem. In order to validate the proposed prediction model and pattern classifier, several machine learning data sets are used.

Optical feature extraction by use of an array of the Hough transform filters (Hough 변환 필터 배열을 이용한 광학적 특징 추출)

  • 장주석;신동학;강영수
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.1
    • /
    • pp.55-60
    • /
    • 2001
  • We propose a method to extract features optically from the input pattern by use of an array of Hough transfOllli filters. Here the subparts of the input pattern are Hough-transformed by. their cOlTesponding elements of the filter array independently and simultaneously. Compared with the conventional method, in which the whole input pattern is Hough-transformed by a single optical filter, the proposed method not only provides the improved optical transform results when the input pattern becomes complex but also extracts the approximate position information of the line segment features. To show the feasibility of this approach, we fabricated a $5\times5$ filter array and performed preliminary experiments.iments.

  • PDF

Design of Optimized Pattern Recognizer by Means of Fuzzy Neural Networks Based on Individual Input Space (개별 입력 공간 기반 퍼지 뉴럴 네트워크에 의한 최적화된 패턴 인식기 설계)

  • Park, Keon-Jun;Kim, Yong-Kab;Kim, Byun-Gon;Hoang, Geun-Chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.181-189
    • /
    • 2013
  • In this paper, we introduce the fuzzy neural network based on the individual input space to design the pattern recognizer. The proposed networks configure the network by individually dividing each input space. The premise part of the networks is independently composed of the fuzzy partition of individual input spaces and the consequence part of the networks is represented by polynomial functions. The learning of fuzzy neural networks is realized by adjusting connection weights of the neurons in the consequent part of the fuzzy rules and it follows a back-propagation algorithm. In addition, in order to optimize the parameters of the proposed network, we use real-coded genetic algorithms. Finally, we design the optimized pattern recognizer using the experimental data for pattern recognition.

Image Recognition by Learning Multi-Valued Logic Neural Network

  • Kim, Doo-Ywan;Chung, Hwan-Mook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.215-220
    • /
    • 2002
  • This paper proposes a method to apply the Backpropagation(BP) algorithm of MVL(Multi-Valued Logic) Neural Network to pattern recognition. It extracts the property of an object density about an original pattern necessary for pattern processing and makes the property of the object density mapped to MVL. In addition, because it team the pattern by using multiple valued logic, it can reduce time f3r pattern and space fer memory to a minimum. There is, however, a demerit that existed MVL cannot adapt the change of circumstance. Through changing input into MVL function, not direct input of an existed Multiple pattern, and making it each variable loam by neural network after calculating each variable into liter function. Error has been reduced and convergence speed has become fast.