• Title/Summary/Keyword: Input parameters

Search Result 3,500, Processing Time 0.028 seconds

The Design of Polynomial Network Pattern Classifier based on Fuzzy Inference Mechanism and Its Optimization (퍼지 추론 메커니즘에 기반 한 다항식 네트워크 패턴 분류기의 설계와 이의 최적화)

  • Kim, Gil-Sung;Park, Byoung-Jun;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.970-976
    • /
    • 2007
  • In this study, Polynomial Network Pattern Classifier(PNC) based on Fuzzy Inference Mechanism is designed and its parameters such as learning rate, momentum coefficient and fuzzification coefficient are optimized by means of Particle Swarm Optimization. The proposed PNC employes a partition function created by Fuzzy C-means(FCM) clustering as an activation function in hidden layer and polynomials weights between hidden layer and output layer. Using polynomials weights can help to improve the characteristic of the linear classification of basic neural networks classifier. In the viewpoint of linguistic analysis, the proposed classifier is expressed as a collection of "If-then" fuzzy rules. Namely, architecture of networks is constructed by three functional modules that are condition part, conclusion part and inference part. The condition part relates to the partition function of input space using FCM clustering. In the conclusion part, a polynomial function caries out the presentation of a partitioned local space. Lastly, the output of networks is gotten by fuzzy inference in the inference part. The proposed PNC generates a nonlinear discernment function in the output space and has the better performance of pattern classification as a classifier, because of the characteristic of polynomial based fuzzy inference of PNC.

Interpretation of the Magnetic Logs for a Finite Line of Magnetic Dipoles Model (유한 선형 자기쌍극자 모델에 대한 검층자료의 해석)

  • Kim, Jin Hu
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.2
    • /
    • pp.135-142
    • /
    • 1999
  • Interpretations of 3-component magnetic logging data obtained for a reinforced bar as a model of the line of the magnetic dipoles are conducted using a least squared inversion technique. The length of the bar is 1.12 m, sampling interval is 0.05 m, the distance between the bar and the borehole is 0.3 m, and the top of the bar is fixed at 0 m of depth. The bar is set to be approximately vertical. Magnetic anomalies smoothed with FFT are used as input data for the inversion. For the interpretation of magnetic logging data the depth to the top, the length, the magnetic moment per unit length, the direction of the magnetization (declination and inclination), and the bearing and plunge of the line of magnetic dipoles are left as unknown parameters. The comparison of the results obtained from the individual inversion of the horizontal component or the vertical component of the magnetic anomalies, and those from the simultaneous inversion of horizontal and vertical component of the magnetic anomalies shows that there exist some disagreements between each inversion result. The depth to the bottom of the bar, which is actually 1.12 m, is estimated as 1.18 m, and the inclination of the magnetization is estimated as -76°by simultaneous inversion. The negative value of the inclination indicates that the strength of the remnant magnetization is much greater than that of the induced magnetization, so that the direction of the resultant magnetization points to the top of the bar.

  • PDF

Prediction of Ultimate Strength and Strain of Concrete Columns Retrofitted by FRP Using Adaptive Neuro-Fuzzy Inference System (FRP로 보강된 콘크리트 부재의 압축응력-변형률 예측을 위한 뉴로퍼지모델의 적용)

  • Park, Tae-Won;Na, Ung-Jin;Kwon, Sung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • Aging and severe environments are major causes of damage in reinforced concrete (RC) structures such as buildings and bridges. Deterioration such as concrete cracks, corrosion of steel, and deformation of structural members can significantly degrade the structural performance and safety. Therefore, effective and easy-to-use methods are desired for repairing and strengthening such concrete structures. Various methods for strengthening and rehabilitation of RC structures have been developed in the past several decades. Recently, FRP composite materials have emerged as a cost-effective alternative to the conventional materials for repairing, strengthening, and retrofitting deteriorating/deficient concrete structures, by externally bonding FRP laminates to concrete structural members. The main purpose of this study is to investigate the effectiveness of adaptive neuro-fuzzy inference system (ANFIS) in predicting behavior of circular type concrete column retrofitted with FRP. To construct training and testing dataset, experiment results for the specimens which have different retrofit profile are used. Retrofit ratio, strength of existing concrete, thickness, number of layer, stiffness, ultimate strength of fiber and size of specimens are selected as input parameters to predict strength, strain, and stiffness of post-yielding modulus. These proposed ANFIS models show reliable increased accuracy in predicting constitutive properties of concrete retrofitted by FRP, compared to the constitutive models suggested by other researchers.

Estimation of Leaf Area, Leaf Fresh Weight, and Leaf Dry Weight of Irwin Mango Grown in Greenhouse using Leaf Length, Leaf Width, Petiole Length, and SPAD Value (엽장, 엽폭, 엽병장 및 SPAD 값을 이용한 온실 재배 어윈 망고의 엽면적, 엽생체중과 엽건물중 추정)

  • Jung, Dae Ho;Cho, Young Yeol;Lee, Jun Gu;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.25 no.3
    • /
    • pp.146-152
    • /
    • 2016
  • Due to complicate canopy structures of Irwin mangoes grown in greenhouses, it is difficult to determine their growth parameters accurately. Leaf area, leaf fresh weight, and leaf dry weight are widely used as indicators to diagnose the tree growth. Therefore, it is necessary to establish models that can non-destructively estimate these growth indicators. The objective of this study was to establish regression models to estimate leaf area, leaf fresh weight, and leaf dry weight of Irwin mangoes (Mangifera indica L. cv. Irwin) by using leaf length, leaf width, petiole length, and SPAD value. The input values of leaf length, leaf width, petiole length, and SPAD value of 6-year old Irwin mangoes were measured, and the corresponding output values of leaf area, leaf fresh weight, and leaf dry weight were also measured. After 14 models were selected among the existing models, coefficients of the models were estimated by regression analysis. Three models with higher $R^2$ and lower RMSE values selected. In validation the $R^2$ values for the selected models were 0.967, 0.743, and 0.567 in the leaf area, leaf fresh weight, and leaf dry weight models, respectively. It is concluded that this models will be helpful to conveniently diagnose the growth of the Irwin mango.

Development of Qual2E Interface System Coupled with HyGIS (HyGIS와 Qual2E의 연계 시스템 개발)

  • Park, In-Hyeok;Kim, Kyung-Tak;Ha, Seong-Ryong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.2
    • /
    • pp.96-108
    • /
    • 2011
  • Going abreast of high public concerns on the environment, the need of environmental modeling has been increased to assess the impact of space exploitation of environment. GIS offers potential solutions to the many problems encountered during water-quality modeling. But there are also many problems associated with the modeling. The preparation of necessary parameters for the modeling can be complicated. Also, the results from one model can be different from each other even the same area is analyzed. This paper aims to develop the data processing system to couple the Qual2E and HyGIS in which Qual2E input and output data files can be created, modified and processed using HyGIS and assess the performance of the system. A structural analysis and standardization of modeling are conducted to identify data flow and processing of Qual2E. Algorithms of the defined processors are designed and developed as component modules. The data model of HyGIS-Qual2E is designed, and GUI(Graphical User Interface) is developed using Visual Basic 6.0 and GDK.

Double-pass Second Harmonics Generation of Tunable CW Infrared Laser Beam of DOFA System in Periodically Poled LiNbO3 (PPLN 비선형 결정과 이중통과법을 이용한 DOFA 시스템에서 증폭된 연속발진형 파장가변 적외선 레이저광의 제 2고조파 발생)

  • Yoo, Kil-Sang;Jo, Jae-Heung;Ko, Kwang-Hoon;Lim, Gwon;Jeong, Do-Young
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.229-236
    • /
    • 2008
  • The optimum conditions of second harmonic generation (SHG) can be successfully achieved experimentally using single pass and double pass methods of a pumping beam. The beam has a power of several Watts radiated by a DOFA (Diode Laser Oscillator & Fiber Amplifier) system, which is a high power CW wavelength tunable infrared laser system, in a PPLN (Periodically Poled MgO doped Lithium Niobate) nonlinear crystal. In the case of a single pass method, the parameters are the wavelength of 535 nm for SHG and the output power of 245 mW generated from the pumping input beam with wavelength of 1070 nm and the power of 2.45 W at phase matching temperature of $108.9^{\circ}C$. The conversion efficiency of SHG was 10%. In order to enhance the output of SHG, the double pass method of the SHG system of a PPLN using a concave mirror for the retroreflection and a pair of wedged flat windows for phase compensation was also presented. In this double pass system, we obtained the SHG output beam with the wavelength of 535 nm and the maximum power of 383 mW at optimum phase matching temperature of $108.5^{\circ}C$ by using an incident pumping beam with wavelength of 1070 nm and the power of 2.45 W. The maximum conversion efficiency is 15.6%, which is more than that of the single pass method.

On the Effective Shear Rigidity in Ship Vibration Analysis (선체진동해석(船體振動解析)에 있어서의 유효전단강성도(有效剪斷剛性度))

  • K.C.,Kim;S.H.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.1
    • /
    • pp.45-53
    • /
    • 1985
  • For the analysis of vertical vibrations of a ship's hull, the Timoshenko beam analogy is accepted up to seven or eight-node modes provided that the system parameters are properly calculated. As to the shear coefficient, it has been a common practice to apply the strain energy method or the projected area method. The theoretical objection to the former is that it ignores lateral contraction due to Poisson's ratio, and the latter is of extreme simplifications. Recently, Cowper's and Stephen's shear coefficient formulas have drawn ship vibration analysts' attentions because these formulas, derivation of which are based on an integrations of the equations of three-dimensional elasticity, take Poisson's ratio into account. Providing computer programs for calculation of the shear coefficient of ship sections modeled as thin-walked multicell sections by each of the forementioned methods, the authors calculated natural vibration characteristics of a bulk carrier and of a container ship by the transfer matrix method using shear coefficients obtained by each of the methods, and discussed the results in comparision. The major conclusions resulted from this investigation are as follows: (1) The shear coefficients taking account of the effects of Poisson's ratio, Cowper's $K_c$ and Stephen's $K_s$, result in higher values of about 10% in maximum as compared with the shear coefficient $K_o$ based on the conventional strain energy methods; (a) $K_c/K_o{\cong}1.05\;and\;K_s/K_o{\cong}1.10$ for ships having single skin side-shell such as a bulk carrier. (b) $K_c/K_o{\cong}1.02\;and\;K_s/K_o{\cong}1.05$ for ships having longitudinally through bulkheads and/or double side-shells in the portion of the cargo hod such as a container carrier. (2) The distributions of the effective shear area along the ship's hull based on each of $K_o,\;K_c\;and\;K_s$ are similar each another except the both end portions. (3) Natural frequencies and mode shapes of the hull based on each of $K_c\;and\;K_s$ are of small differences as compared each other. (4) In cases of using $K_c\;or\;K_s$ in ship vibration analysis, it is also desirable to have the bending rigidity be corrected according to the effective breadth concept. And then, natural frequencies and mode shapes calculated with the bending rigidity corrected in the above and with each of $K_o,\;K_c\;and\;K_s$ result in small differences as compared each another. (5) Referring to those mentioned in the above (3) and (4) and to the full-scale experimental results reported by Asmussen et al.[17], and considering laboursome to prepare the computer input data, the following suggestions can safely be made; (a) Use of $K_o$ in ship vibration analysis is appropriate in practical senses. (b) Use of $K_c$ is appropriate even for detailed vibration analysis of a ship's hull. (6) The effective shear area based on the projected area method is acceptable for the two-node mode.

  • PDF

Time-Scale Modification of Polyphonic Audio Signals Using Sinusoidal Modeling (정현파 모델링을 이용한 폴리포닉 오디오 신호의 시간축 변화)

  • 장호근;박주성
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.77-85
    • /
    • 2001
  • This paper proposes a method of time-scale modification of polyphonic audio signals based on a sinusoidal model. The signals are modeled with sinusoidal component and noise component. A multiresolution filter bank is designed which splits the input signal into six octave-spaced subbands without aliasing and sinusoidal modeling is applied to each subband signal. To alleviate smearing of transients in time-scale modification a dynamic segmentation method is applied to subbands which determines the analysis-synthesis frame size adaptively to fit time-frequency characteristics of the subband signal. For extracting sinusoidal components and calculating their parameters matching pursuit algorithm is applied to each analysis frame of subband signal. In accordance with spectrum analysis a psychoacoustic model implementing the effect of frequency masking is incorporated with matching pursuit to provide a resonable stop condition of iteration and reduce the number of sinusoids. The noise component obtained by subtracting the synthesized signal with sinusoidal components from the original signal is modeled by line-segment model of short time spectrum envelope. For various polyphonic audio signals the result of simulation shows suggested sinusoidal modeling can synthesize original signal without loss of perceptual quality and do more robust and high quality time-scale modification for large scale factor because of representing transients without any perceptual loss.

  • PDF

FFC2Q Model for NPS Load Analysis according to Characteristics of Early Stage of Runoff (강우 초기특성에 따른 비점오염부하량 산정을 위한 FFC2Q 모형)

  • Lee, Jong-Tae;Seo, Kyung-A;Hur, Sung-Chul
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.3
    • /
    • pp.245-256
    • /
    • 2010
  • We study the basic theory and applicability of the WQUAL block in the FFC2Q model and the characteristics of non-point pollutant loads during the early stage of runoff. Study is also performed on selection of the values of the related parameters and their effect on the simulation results. FFC2Q simulation results are compared for verification with the measured data for three rainfall events in the Gunja Subbasin and found to be similar to the measured data in peak-flows, total runoff volumes, total loads, peak concentrations and times of peak concentration. This model thus shows results very close to those applying the SWMM and MOUSE models, even though it uses simplified input data. Related to rainfall distribution, under the condition of Huff 1st quartile distribution the pollutant loads occurred earlier than under other conditions, and in the early stage of rainfall the BOD and COD loads increased faster than the SS loads. The NPS loads were concentrated in the early stage of rainfall and finally reached total loads, so the rainfall after that could not contribute so much to the NPS loads.

Comparison of Groundwater Recharge between HELP Model and SWAT Model (HELP 모형과 SWAT 모형의 지하수 함양량 비교)

  • Lee, Do-Hun;Kim, Nam-Won;Chung, Il-Moon
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.383-391
    • /
    • 2010
  • The groundwater recharge was assessed by using both SWAT and HELP models in Bocheong-cheon watershed. The SWAT model is a comprehensive surface and subsurface model, but it lacks the physical basis for simulating a soil water percolation process. The HELP model which has a drawback in simulating subsurface lateral flow and groundwater flow component can simulate soil water percolation process by considering the unsaturated flow effect of soil layers. The SWAT model has been successfully applied for estimating groundwater recharge in a number of watersheds in Korea, while the application of HELP model has been very limited. The subsurface lateral flow parameter was proposed in order to consider the subsurface lateral flow effect in HELP model and the groundwater recharge was simulated by the modified exponential decay weighting function in HELP model. The simulation results indicate that the recharge of HELP model significantly depends on the values of lateral flow parameter. The recharge errors between SWAT and HELP are the smallest when the lateral flow parameter is about 0.6 and the recharge rates between two models are shown to be reasonably comparable for daily, monthly, and yearly time scales. The HELP model is useful for estimating groundwater recharge at watershed scale because the model structure and input parameters of HELP model are simpler than that of SWAT model. The accuracy of assessing the groundwater recharge might be improved by the concurrent application of SWAT model and HELP model.