• Title/Summary/Keyword: Input output linear model

Search Result 322, Processing Time 0.028 seconds

Quadratic Loss Support Vector Interval Regression Machine for Crisp Input-Output Data

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.449-455
    • /
    • 2004
  • Support vector machine (SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate interval regression models for crisp input-output data. The proposed method is based on quadratic loss SVM, which implements quadratic programming approach giving more diverse spread coefficients than a linear programming one. The proposed algorithm here is model-free method in the sense that we do not have to assume the underlying model function. Experimental result is then presented which indicate the performance of this algorithm.

  • PDF

Input-constrained Tracking Control of a Converter Model Using Invariant Sets (불변 집합을 이용한 컨버터의 입력 제약 추종 제어)

  • Kim, Jung-Su;Lee, Young Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.177-182
    • /
    • 2013
  • This paper proposes an input-constrained reference tracking control of a converter model. To this end, first it is shown that the bilinear converter model can be equivalently represented by a linear uncertain model belonging to a polytopic set. Then, an input-constrained tracking control scheme for the linear uncertain model is designed based on recently proposed tracking control scheme. The control scheme yields not only a stabilizing control gain but also a feasible and invariant set for the converter model. Finally, simulation results show that the state trajectory always stays in the feasible and invariant set and that the output tracks the given reference while satisfying the input constraint.

Quantity vs. Quality in the Model Order Reduction (MOR) of a Linear System

  • Casciati, Sara;Faravelli, Lucia
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.99-109
    • /
    • 2014
  • The goal of any Model Order Reduction (MOR) technique is to build a model of order lower than the one of the real model, so that the computational effort is reduced, and the ability to estimate the input-output mapping of the original system is preserved in an important region of the input space. Actually, since only a subset of the input space is of interest, the matching is required only in this subset of the input space. In this contribution, the consequences on the achieved accuracy of adopting different reduction technique patterns is discussed mainly with reference to a linear case study.

A Note on Linear Regression Model Using Non-Symmetric Triangular Fuzzy Number Coefficients

  • Hong, Dug-Hun;Kim, Kyung-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.2
    • /
    • pp.445-449
    • /
    • 2005
  • Yen et al. [Fuzzy Sets and Systems 106 (1999) 167-177] calculated the fuzzy membership function for the output to find the non-symmetric triangular fuzzy number coefficients of a linear regression model for all given input-output data sets. In this note, we show that the result they obtained in their paper is invalid.

  • PDF

A Single-Input Single-Output Approach by using Minor-Loop Voltage Feedback Compensation with Modified SPWM Technique for Three-Phase AC-DC Buck Converter

  • Alias, Azrita;Rahim, Nasrudin Abd.;Hussain, Mohamed Azlan
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.829-840
    • /
    • 2013
  • The modified sinusoidal pulse-width modulation (SPWM) is one of the PWM techniques used in three-phase AC-DC buck converters. The modified SPWM works without the current sensor (the converter is current sensorless), improves production of sinusoidal AC current, enables obtainment of near-unity power factor, and controls output voltage through modulation gain (ranging from 0 to 1). The main problem of the modified SPWM is the huge starting current and voltage (during transient) that results from a large step change from the reference voltage. When the load changes, the output voltage significantly drops (through switching losses and non-ideal converter elements). The single-input single-output (SISO) approach with minor-loop voltage feedback controller presented here overcomes this problem. This approach is created on a theoretical linear model and verified by discrete-model simulation on MATLAB/Simulink. The capability and effectiveness of the SISO approach in compensating start-up current/voltage and in achieving zero steady-state error were tested for transient cases with step-changed load and step-changed reference voltage for linear and non-linear loads. Tests were done to analyze the transient performance against various controller gains. An experiment prototype was also developed for verification.

The Control of Flexible Beam using Nonlinear Compensator with Dual-Input Describing Function (쌍입력 기술함수를 갖는 비선형 보상기를 이용한 유연한 빔의 제어)

  • 권세현;이형기;최부귀
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.644-650
    • /
    • 1998
  • In this paper , a state space model for flexible beam is presented using the assumed-modes approach. The state space equation is derived for a flexible beam in which one end is connected to a motor and is driven by a torque equation and the other end is free. Many of the transfer function proposed thus far use the torque to the flexible beam as the input and the tip deflection of the flexible beam as the output. The Technique for the analysis and synthesis of the dual-input describing function(DIDF) is introduced here and the construction of a non-linear compensator, based on this technique, is proposed. This non-linear compensator, properly connected in the direct path of a closed-loop linear or non-linear control system. The above non-linear network is used to compensate linear and non-linear systems for instability, limit cycles, low speed of response and static accuracy. The effectiveness of the proposed scheme is demonstrated through computer simulation and experimental results.

  • PDF

System Identification for Active Vibration control (능동 진동제어를 위한 시스템 동정)

  • 송철기;황진권;최종호;이장무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.397-401
    • /
    • 1994
  • This paper proposes an identification method for a thin plate where multiple actuators and sensors are bonded. Since a thin plate has small damping ratios of all modes, each mode can be identified seperately with a bandpass filter for each modal signal. With the bandpass filter and the characteristics of the plate, the Multi-Input Multi-Output (MIMO) model of the plate can be converted to several Multi-Input Single-Output(MISO) models of second order linear difference equations of the modes. Parameters for each mode are obtained by using the Least Square method. Form there MISO models, the MIMO model is obtained in the form of the state space. Experiments were performed for an all-clamped plate with two pairs of piezoelectric actuators and sensors. The outputs of the identified model and the experimental data match well.

  • PDF

Controller Design of the Series Resonant Converter for Reducing Output Voltage Ripple (출력 전압 맥동감소를 위한 직렬공진형 변환기의 제어기 설계)

  • 김만고;한재원;윤명중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.6
    • /
    • pp.376-382
    • /
    • 1988
  • A small-signal low-frequency disturbance of the input line affects the regulated-output voltage of the series resonant converter. To mitigate the detrimental effect, the output feedback PI-controller is employed. Small-signal linear models are represented to characterize the closed loop series resonant converter system. Design equations for the PI-controller which satisfy stability and percent ripple conditions are derived from the closed-loop linear model. Experimental results are presented which show excellent correlation with theory.

  • PDF

Design of the optimal stochastic inputs for linear system parameter estimation (선형계통의 파라미터 추정을 위한 최적 확률 입력신호의 설계)

  • ;;Lee, S. W.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.168-173
    • /
    • 1987
  • The optimal Input design problem for linear system Which have the common parameters in the system and noise transfer functions. Exploiting the assumed Model structure and deriving the information matrix structure in detail, D-optimal open-loop stochastic input can be realized as an ARMA process under the Input or output variance constraints. In spite of the reduced order, It Is necessary to develop an efficient algorithms for the optimation with respect to the .rho..

  • PDF

A Robust Model Reference Adaptive controller Design -SISO Case- (강인한 모델기준 적응제어기의 설계 -단입력 단출력 경우)

  • Seok, Ho-Dong;Lyou, Joon;Chung, Tae-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1073-1076
    • /
    • 1991
  • This paper presents a robust model reference adaptive controller for continuous-time single-input single-output linear time-invariant systems which are subjected to output-dependent disturbances as well as bounded external disturbances. In the derived controller form, an additional output error feedback term is included to over-ride the destabilizing effects by the output-dependent disturbances.

  • PDF