• 제목/요약/키워드: Input distance function

검색결과 125건 처리시간 0.031초

Brain Tumor Detection Based on Amended Convolution Neural Network Using MRI Images

  • Mohanasundari M;Chandrasekaran V;Anitha S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권10호
    • /
    • pp.2788-2808
    • /
    • 2023
  • Brain tumors are one of the most threatening malignancies for humans. Misdiagnosis of brain tumors can result in false medical intervention, which ultimately reduces a patient's chance of survival. Manual identification and segmentation of brain tumors from Magnetic Resonance Imaging (MRI) scans can be difficult and error-prone because of the great range of tumor tissues that exist in various individuals and the similarity of normal tissues. To overcome this limitation, the Amended Convolutional Neural Network (ACNN) model has been introduced, a unique combination of three techniques that have not been previously explored for brain tumor detection. The three techniques integrated into the ACNN model are image tissue preprocessing using the Kalman Bucy Smoothing Filter to remove noisy pixels from the input, image tissue segmentation using the Isotonic Regressive Image Tissue Segmentation Process, and feature extraction using the Marr Wavelet Transformation. The extracted features are compared with the testing features using a sigmoid activation function in the output layer. The experimental findings show that the suggested model outperforms existing techniques concerning accuracy, precision, sensitivity, dice score, Jaccard index, specificity, Positive Predictive Value, Hausdorff distance, recall, and F1 score. The proposed ACNN model achieved a maximum accuracy of 98.8%, which is higher than other existing models, according to the experimental results.

A Study on 3D RTLS at Port Container Yards Using the Extended Kalman Filter

  • Kim, Joeng-Hoon;Lee, Hyun-Woo;Kwon, Soon-Ryang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권4호
    • /
    • pp.228-235
    • /
    • 2007
  • The main purpose of this paper is to manage the container property effectively at the container yard by applying the RTLS technology to the field of port logistics. Yet, many kinds of noises happen to be inputted with the distance value(between the reader and the tag) which is to be inputted into the location identification algorithm, which makes the distance value jumped due to the system noise of the ultrasonic sensor module and the measurement noise. The Kalman Filter is widely used to prevent this jump occurrence; the noises are eliminated by using the EKF(Extended Kalman Filter) while considering that the distance information of the ultrasonic sensor is non-linear. Also, the 3D RTLS system at the port container yard suggested in this research is designed not to be interrupted for its ultrasonic transmission by positioning the antenna at the front of each sector of the container where the active tags are installed. We positioned the readers, which function as antennas for location identification, to four places randomly in the absolute coordinate and let the positions of the active tags identified by using the distance data delivered from the active tags. For the location identification algorithm used in this paper, the triangulation measurement that is most used in general is applied and newly reorganized to calculate the position of the container. In the first experiment, we dealt with the error resulting in the angle and the distance of the ultrasonic sensor module, which is the most important in the hardware performance; in the second, we evaluated the performance of the location identification algorithm, which is the most important in the software performance, and tested the noise cancellation effects for the EKF. According to the experiment result, the ultrasonic sensor showed an average of 3 to 5cm error up to $45^{\circ}$ in case of $60^{\circ}$ or more, non-reliable linear distances were obtained. In addition, the evaluation of the algorithm performance showed an average of $4^{\circ}{\sim}5^{\circ}$ error due to the error of the linear distance-this error is negligible for most container location identifications. Lastly, the experiment results of noise cancellation and jump preservation by using the EKF showed that noises were removed in the distance information which was entered from the input of the ultrasonic sensor and as a result, only signal was extracted; thus, jumps were able to be removed and the exact distance information between the ultrasonic sensors could be obtained.

Mountain Clustering 기반 퍼지 RBF 뉴럴네트워크의 동정 (Identification of Fuzzy-Radial Basis Function Neural Network Based on Mountain Clustering)

  • 최정내;오성권;김현기
    • 한국정보전자통신기술학회논문지
    • /
    • 제1권3호
    • /
    • pp.69-76
    • /
    • 2008
  • 본 논문에서는 Mountain clustering 알고리즘을 이용한 Fuzzy Radial Basis Function Neural Network(FRBFNN)의 규칙 수를 자동생성 방법을 제시한다. FRBFNN은 기존 RBFNN에서 가우시안이나 타원형 형태의 특정 RBF를 사용하는 구조와 달리 클러스터의 중심값과의 거리에 기반을 둔 멤버쉽함수를 사용하여 전반부의 공간 분할 및 활성화 레벨을 결정한다. 또한 분할된 로컬영역에서의 입출력 특성을 나타내는 퍼지규칙의 후반부로서 고차 다항식을 고려하였다. 본 논문에서는 데이터의 밀집도에 기반을 두어 클러스터링을 수행하는 Mountain clustering 알고리즘을 사용하여 적합한 퍼지 규칙(클러스터)의 수와 클러스터의 중심값을 자동적으로 생성하는 방법을 제안한다. Mountain clustering으로부터 구해진 클러스터의 중심은 멤버쉽 값을 결정하는데 사용되며, Weighted Least Square Estimator (WLSE) 알고리즘을 사용하여 후반부 다항식의 계수를 추정한다. 제안된 알고리즘은 비선형 함수 모델링에 적용하여 성능의 우수성과 알고리즘의 타당성을 보인다.

  • PDF

Seismic loss-of-support conditions of frictional beam-to-column connections

  • Demartino, Cristoforo;Monti, Giorgio;Vanzi, Ivo
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.527-538
    • /
    • 2017
  • The evaluation of the loss-of-support conditions of frictional beam-to-column connections using simplified numerical models describing the transverse response of a portal-like structure is presented in this paper considering the effects of the seismic-hazard disaggregation. Real earthquake time histories selected from European Strong-motion Database (ESD) are used to show the effects of the seismic-hazard disaggregation on the beam loss-of-support conditions. Seismic events are classified according to different values of magnitudes, epicentral distances and soil conditions (stiff or soft soil) highlighting the importance of considering the characteristics of the seismic input in the assessment of the loss-of-support conditions of frictional beam-to-column connections. A rigid and an elastic model of a frame of a precast industrial building (2-DoF portal-like model) are presented and adopted to find the minimum required friction coefficient to avoid sliding. Then, the mean value of the minimum required friction coefficient with an epicentral distance bin of 10 km is calculated and fitted with a linear function depending on the logarithm of the epicentral distance. A complete parametric analysis varying the horizontal and vertical period of vibration of the structure is performed. Results show that the loss-of-support condition is strongly influenced by magnitude, epicentral distance and soil conditions determining the frequency content of the earthquake time histories and the correlation between the maxima of the horizontal and vertical components. Moreover, as expected, dynamic characteristics of the structure have also a strong influence. Finally, the effect of the column nonlinear behavior (i.e. formation of plastic hinges at the base) is analyzed showing that the connection and the column are a series system where the maximum force is limited by the element having the minimum strength. Two different longitudinal reinforcement ratios are analyzed demonstrating that the column strength variation changes the system response.

적응적 탐색 전략을 갖춘 계층적 ART2 분류 모델 (Hierarchical Ann Classification Model Combined with the Adaptive Searching Strategy)

  • 김도현;차의영
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권7_8호
    • /
    • pp.649-658
    • /
    • 2003
  • 본 연구에서는 ART2 신경회로망의 성능을 개선하기 위한 계층적 구조를 제안하고, 구성된 클러스터에 대하여 적합도(fitness) 선택을 통한 빠르고 효과적인 패턴 분류 모델(HART2)을 제안한다. 본 논문에서 제안하는 신경회로망은 비지도 학습을 통하여 대략적으로 1차 클러스터를 형성하고, 이 각각의 1차 클러스터로 분류된 패턴에 대해 지도학습을 통한 2군 클러스터를 생성하여 패턴을 분류하는 계층적 신경회로망이다. 이 신경회로망을 이용한 패턴분류 과정은 먼저 입력패턴을 1차 클러스터와 비교하여 유사한 몇 개의 1차 클러스터를 적합도에 따라 선택한다. 이때, 입력패턴과 클러스터들간의 상대 측정 거리비에 기반한 적합도 함수를 도입하여 1차 클러스터에 연결된 클러스터들을 Pruning 함으로써 계층적인 네트워크에서의 속도 향상과 정확성을 추구하였다. 마지막으로 입력패턴과 선택된 1차 클러스터에 연결된 2차 클러스터와의 비교를 통해 최종적으로 패턴을 분류하게 된다. 본 논문의 효율성을 검증하기 위하여 22종의 한글 및 영어 글꼴에 대한 숫자 데이타를 다양한 형태로 변형시켜 확장된 테스트 패턴에 대하여 실험해 본 결과 제안된 신경회로망의 패턴 분류 능력의 우수함을 증명하였다

농촌환경자원의 정보관리시스템 구축 (Development of Management Information System of Rural Environmental Resources)

  • 이상영;김상범
    • 농촌계획
    • /
    • 제13권1호
    • /
    • pp.73-84
    • /
    • 2007
  • The first theme of this study is to preserve and manage rural multi-functionality resource Information. This study is to suggest the method that can irradiate rural multi-functionality resource Information efficiently and constructively. GIS uses PDA and Tablet PC as an investigation tool and verifies the outcome of the development in the investigation system. This study enhanced the mobility function of PDA by installing recording system and camera to the PDA. Also, Using GPS has been ensured scientific precision and realism to the investigation. Direct input on spot can save time, cost and minimize human error by simplifying the investigation process. Database is composed of characters like scale, form, location, distance, resident's opinion and image of 37 resources. The survey system was applied in 170 villages and got a total of 12,270 resources data. Management system should be easy to input and output the surveyed information and to get reports in any kind of form ( i.e. final result can be produced as a map). By utilizing of the Rural Resource information system, the study made a simulation to compare the target areas before and after. Also, digitalized investigation system, minimized re-input and reprocessing of data and enabled to simplify and standardize the process than memorandum investigation. Data collected through digital system could offer people useful information by Web-GIS. It was need to specify practical way in decision-making and a way to measure the value of resources to align with the regional plan. Also, need to keep on developing statistical data and application program that can connect us to present the best solution to support regional planning. Therefore, quality of data is very important. Finally, it is very important to develop various programs to analyze space md rural resource by monitoring rural environment.

중국 제조업 부문별 CO2 잠재감축량 및 한계저감비용 지역 간 비교 분석 (Comparison of Potential CO2 Reduction and Marginal Abatement Costs across Sectors and Provinces in the Chinese Manufacturing Industries)

  • 김영미;이명헌
    • 자원ㆍ환경경제연구
    • /
    • 제22권3호
    • /
    • pp.459-479
    • /
    • 2013
  • 본 논문에서는 중국 정부가 추진하고 있는 '저탄소 지속가능한 성장'의 실현가능성을 개진하는 데 있어서 탄소배출권 거래 시범지역으로 지정된 7개 지역 가운데 북경시, 중경시 제조업 24개 부문을 대상으로 각 지역별로 투입물거리함수를 추정하여 기술효율성, $CO_2$ 암묵가격, 투입요소 간 간접 모리시마 대체탄력성 등을 측정하여 이를 토대로 업종 간, 지역 간 최대 $CO_2$ 잠재감축량, 탄소배출권 거래의 비용절감효과, 자본 투자로 인한 $CO_2$ 감축의 잠재적 성과 등을 비교, 분석하였다. 2010년 현재 북경시, 중경시 제조업은 100% 기술효율성 달성을 통하여 $CO_2$ 배출량을 각각 최대 516만 톤, 1,704만 톤까지 감축가능한 것으로 추산되었다. 평균적으로 탄소배출권 거래의 한계저감비용 절감효과는 중경시에서, 자본 투자의 $CO_2$ 감축효과 가능성은 북경시에서 더 높게 나타났다.

국내 철강업의 생산요소 간 비효율적 배분을 고려한 CO2 저감비용 산정 및 분석: 비용함수접근법 (Estimation of CO2 Abatement Cost Considering Allocative Inefficiency of Inputs for the Korean Steel Industry: A Cost Function Approach)

  • 이명헌
    • 자원ㆍ환경경제연구
    • /
    • 제23권3호
    • /
    • pp.453-472
    • /
    • 2014
  • 2015년부터 도입예정인 탄소 배출권거래제의 파급효과를 분석하는 데 있어서 산업별, 기업별 $CO_2$ 저감비용에 대한 정확한 산정이 요구된다. 기업이 환경규제 등 제약된 환경에서 생산 활동을 할 경우 생산요소의 투입과정에서 비효율적 배분으로 인한 생산비용의 증가가 초래되어 비용최소화 달성에 실패할 개연성이 높아진다. $CO_2$ 암묵가격을 측정한 기존 거리함수접근법은 투입요소 간 비효율적 배분 비용을 반영하지 못함에 따라 $CO_2$ 저감비용을 과소평가할 수 있다. 본 논문에서는 이러한 거리함수접근법의 한계를 극복하기 위하여 국내 철강업을 대상으로 비용함수접근법을 사용하여 1990-2010 기간 동안 투입요소 간 비효율적 배분 여부를 검증하고, $CO_2$ 한계저감비용을 추정하였다. 투입요소 간 배분 효율성 달성은 기각되었으며, 표본기간 동안 $CO_2$ 1톤 감축하는 데 연평균 92,000원의 비용을 지불한 것으로 나타났다.

A study on Iris Recognition using Wavelet Transformation and Nonlinear Function

  • Hur, Jung-Youn;Truong, Le Xuan
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.553-559
    • /
    • 2004
  • In todays security industry, personal identification is also based on biometric. Biometric identification is performed basing on the measurement and comparison of physiological and behavioral characteristics, Biometric for recognition includes voice dynamics, signature dynamics, hand geometry, fingerprint, iris, etc. Iris can serve as a kind of living passport or living password. Iris recognition system is the one of the most reliable biometrics recognition system. This is applied to client/server system such as the electronic commerce and electronic banking from stand-alone system or networks, ATMs, etc. A new algorithm using nonlinear function in recognition process is proposed in this paper. An algorithm is proposed to determine the localized iris from the iris image received from iris input camera in client. For the first step, the algorithm determines the center of pupil. For the second step, the algorithm determines the outer boundary of the iris and the pupillary boundary. The localized iris area is transform into polar coordinates. After performing three times Wavelet transformation, normalization was done using sigmoid function. The converting binary process performs normalized value of pixel from 0 to 255 to be binary value, and then the converting binary process is compare pairs of two adjacent pixels. The binary code of the iris is transmitted to the by server. the network. In the server, the comparing process compares the binary value of presented iris to the reference value in the University database. Process of recognition or rejection is dependent on the value of Hamming Distance. After matching the binary value of presented iris with the database stored in the server, the result is transmitted to the client.

  • PDF

MLP의 함수근사화 능력을 이용한 이동통신 3차원 전파 손실 모델링 (3D Wave Propagation Loss Modeling in Mobile Communication using MLP's Function Approximation Capability)

  • 양서민;이혁준
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제26권10호
    • /
    • pp.1143-1155
    • /
    • 1999
  • 셀룰러 방식의 이동통신 시스템에서 전파의 유효신호 도달범위를 예측하기 위해서는 전파전파 모델을 이용한 예측기법이 주로 사용된다. 그러나, 전파과정에서 주변 지형지물에 의해 발생하는 전파손실은 매우 복잡한 비선형적인 특성을 가지며 수식으로는 정확한 표현이 불가능하다. 본 논문에서는 신경회로망의 함수 근사화 능력을 이용하여 전파손실 예측모델을 생성하는 방법을 제안한다. 즉, 전파손실을 송수신 안테나간의 거리, 송신안테나의 특성, 장애물 투과영향, 회절특성, 도로, 수면에 의한 영향 등과 같은 전파환경 변수들의 함수로 가정하고, 신경회로망 학습을 통하여 함수를 근사화한다. 전파환경 변수들이 신경회로망 입력으로 사용되기 위해서는 3차원 지형도와 벡터지도를 이용하여 전파의 반사, 회절, 산란 등의 물리적인 특성이 고려된 특징 추출을 통해 정량적인 수치들을 계산한다. 이와 같이 얻어진 훈련데이타를 이용한 신경회로망 학습을 통해 전파손실 모델을 완성한다. 이 모델을 이용하여 서울 도심 지역의 실제 서비스 환경에 대한 타 모델과의 비교실험결과를 통해 제안하는 모델의 우수성을 보인다.Abstract In cellular mobile communication systems, wave propagation models are used in most cases to predict cell coverage. The amount of propagation loss induced by the obstacles in the propagation path, however, is a highly non-linear function, which cannot be easily represented mathematically. In this paper, we introduce the method of producing propagation loss prediction models by function approximation using neural networks. In this method, we assume the propagation loss is a function of the relevant parameters such as the distance from the base station antenna, the specification of the transmitter antenna, obstacle profile, diffraction effect, road, and water effect. The values of these parameters are produced from the field measurement data, 3D digital terrain maps, and vector maps as its inputs by a feature extraction process, which takes into account the physical characteristics of electromagnetic waves such as reflection, diffraction and scattering. The values produced are used as the input to the neural network, which are then trained to become the propagation loss prediction model. In the experimental study, we obtain a considerable amount of improvement over COST-231 model in the prediction accuracy using this model.