• Title/Summary/Keyword: Input devices

Search Result 1,219, Processing Time 0.026 seconds

A Study on PFC AC-DC Converter of High Efficiency added in Electric Isolation (절연형 고효율 PFC AC-DC 컨버터에 관한 연구)

  • Kwak, Dong-Kurl;Kim, Sang-Roan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1349-1355
    • /
    • 2009
  • This paper is studied on a novel power factor correction (PFC) AC-DC converter of high efficiency by soft switching technique. The input current waveform in the proposed converter is got to be a sinusoidal form composed of many a discontinuous pulse in proportion to the magnitude of a ac input voltage under the constant switching frequency. Therefore, the input power factor is nearly unity and the control method is simple. The proposed converter adding an electric isolation operates with a discontinuous current mode (DCM) of the reactor in order to obtain some merits of simpler control, such as fixed switching frequency, without synchronization control circuit used in continuous current mode (CCM). To achieve the soft switching (ZCS or ZVS) of control devices, the converter is constructed with a new loss-less snubber for a partial resonant circuit. It is that the switching losses are very low and the efficiency of the converter is high, Particularly, the stored energy in a loss-less snubber capacitor recovers into input side and increases input current from a resonant operation. The result is that the input power factor of the proposed converter is higher than that of a conventional PFC converter. This paper deals mainly with the circuit operations, theoretical, simulated and experimental results of the proposed PFC AC-DC converter in comparison with a conventional PFC AC-DC converter.

The Improvement of Matching of Amplifier Input Transistor for Display Driver IC (Display Driver IC용 Amplifier Input Transistor의 Matching 개선)

  • Kim, Hyeon-Cheol;Roh, Yong-Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.213-216
    • /
    • 2008
  • The voltages for pixel electrodes on LCD panels are supplied with analog voltages from LCD Driver ICs (LDIs). The latest LDI developed for large LCD TV's has suffered from the degradation of analog output characteristics (target voltage: AVO and output voltage deviation: dVO). By the failure analysis, humps in $I_D-V_G$ curves have been observed in high voltage (HV) NMOS devices for input transistors in amplifiers. The hump is investigated to be the main cause of the deviation for the driving current in HV NMOS transistors. It also makes the matching between two input transistors worse and consequently aggravates the analog output characteristics. By simply modifying the active layout of HV NMOS transistors, this hump was removed and the analog characteristics (AVO &dVO) were improved significantly. In the help of the improved analog characteristics, it also became possible to reduce the size of the input transistors less than a half of conventional transistors and significantly improve the integration density of LDIs.

The Analysis of Positional Accuracy with Input/Output Instruments in Digital Mapping of National Base Map (국가기본도 수치지도제작 과정에서 입출력장비에 따른 위치정확도 분석)

  • 이현직;손덕재
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.2
    • /
    • pp.291-297
    • /
    • 1998
  • In order to accomplish the digital map production I/O devices should be used which are used for data input procedure to convert original paper map(hardcopy) data into computer compatible digital map data, and for the mapsheet output procedure of worked out data. For the input device, digitizer and scanner are most frequently used. Digitizer has possibility of direct production of digital data, and are mainly used for input procedure of partly plotted source map. In contrary, scanner is rather easy to operate the instrument, so that is widely used for the input procedure of original sheet map. In this study, to extract the input device characteristics, some kinds of digitizers and scanners were cheesed and used for the positional error analysis through the operational method and types of instruments. Also for the output device characteristics, some kinds of plotter and materials are used and compared to analyze the positional error through the instrumental types and output sheet materials.

  • PDF

Observer-Based Output Feedback Stochastic Stabilization for T-S Fuzzy Systems with Input Delay (입력지연을 갖는 T-S 퍼지 시스템의 관측기기반 출력궤환 확률적 안정화)

  • Lee, Sang In;Park, Jin Bae;Joo, Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.298-303
    • /
    • 2004
  • This paper deals with a stochastic stabilization of observer-based output-feedback control Takagi-Sugeno (T-S) fuzzy system with Markovian input delay. The finite Markovian process is adopted to model the input delay of the overall control system. It is assumed that the zero and hold devices are used for control input. The continuous-time T-S fuzzy system with the Markovian input delay is discretized for easy handling delay, accordingly, the discretized T-S fuzzy system is represented by a discrete-time T-S fuzzy system with jumping parameters. The stochastic stabilizability of the jump T-S fuzzy system is derived and formulated in terms of linear matrix inequalities (LMIs). The usefulness of the proposed algorithm is also certificated by simulation of 2 degree of freedom helicopter model.

A Ripple-free Input Current Interleaved Converter with Dual Coupled Inductors for High Step-up Applications

  • Hu, Xuefeng;Zhang, Meng;Li, Yongchao;Li, Linpeng;Wu, Guiyang
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.590-600
    • /
    • 2017
  • This paper presents a ripple-free input current modified interleaved boost converter for high step-up applications. By integrating dual coupled inductors and voltage multiplier techniques, the proposed converter can reach a high step-up gain without an extremely high turn-ON period. In addition, a very small auxiliary inductor employed in series to the input dc source makes the input current ripple theoretically decreased to zero, which simplifies the design of the electromagnetic interference (EMI) filter. In addition, the voltage stresses on the semiconductor devices of the proposed converter are efficiently reduced, which makes high performance MOSFETs with low voltage rated and low resistance $r_{DS}$(ON) available to reduce the cost and conduction loss. The operating principles and steady-state analyses of the proposed converter are introduced in detail. Finally, a prototype circuit rated at 400W with a 42-50V input voltage and a 400V output voltage is built and tested to verify the effectiveness of theoretical analysis. Experimental results show that an efficiency of 95.3% can be achieved.

A Study on the Affected of DC-Link Voltage Balance Control of the Vienna Rectifier Linked With the Input Series Output Parallel LLC Converter (직렬 입력 병렬 출력 연결된 LLC 컨버터를 갖는 비엔나 정류기의 DC 링크 전압 평형 제어에 관한 연구)

  • Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.205-213
    • /
    • 2021
  • Due to the advantage of reducing the voltage applied to the switch semiconductor, the input series and output parallel combination is widely used in systems with high input voltage and large output current. On the other hand, the LLC converter is widely used as a high-efficiency power converter, and when connected by ISOP combination, there is a possibility that input voltage imbalance may occur due to a mismatch of passive devices. To avoid damaging the switching device, this study analyzed the DC-link voltage imbalance of a high-capacity supply using an ISOP LLC converter. In addition, the case where DC-link unbalance control was applied and the case not applied was analyzed respectively. Based on this analysis, an initial start-up algorithm was proposed to prevent input power semiconductor device damage due to DC-link over-voltage. The effectiveness of the proposed algorithm has been verified through simulations and experiments.

A Study on Partial Resonant AC-DC Chopper of Power Factor Correction (역률개선형 부분공진 AC-DC 초퍼에 관한 연구)

  • Kwak, Dong-Kurl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.3
    • /
    • pp.19-25
    • /
    • 2008
  • In this paper, author proposes a novel step-up AC-DC chopper operated with power factor correction(PFC) and with high efficiency. The proposed chopper behaves with discontinuous current control(DCC) of input current. The input current waveform in the proposed chopper is got to be a discontinuous sinusoid form in proportion to magnitude of ac input voltage under the constant duty cycle switching. Therefore, the input power factor is nearly unity and the control method is simple. In the general DCC chopper, the switching devices are turned-on with the zero current switching, but turn-off of the switching devices is switched at current maximum value. To achieve a soft switching of the switching rum-off, the proposed chopper is used a new partial resonant circuit. The result is that the switching loss is very low and the efficiency of chopper is high.

  • PDF

A Novel Step-up AC-DC Converter with PFC by Discontinuous Current Control (전류불연속 제어에 의한 새로운 PFC 승압형 AC-DC 컨버터)

  • Kim, Choon-Sam;Shim, Jae-Sun;Kim, Chun-Sik;Lee, Hyun-Woo;Kwak, Dong-Kurl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.142-148
    • /
    • 2006
  • In this paper, authors propose a novel step-up AC-DC converter operated with power factor correction (PFC) and with high efficiency. The proposed converter behaves with discontinuous current control (DCC) of input current. The input current waveform in the proposed converter is got to be a discontinuous sinusoid form in proportion to magnitude of at input voltage under the constant duty cycle switching. Therefore, the input power factor is nearly unity and the control method is simple. In the general DCC converters, the switching devices are turned-on with the zero current switching (ZCS). But turn-off of the switching devices is done at the maximum current. To achieve a soft switching at turn-off, the proposed converter uses a new partial resonant circuit, which results in the very low switching loss and the high efficiency of converter.

A Study on the Test Strategy of Digital Circuit Board in the Production Line Based on Parallel Signature Analysis Technique (PSA 기법에 근거한 생산라인상의 디지털 회로 보오드 검사전략에 대한 연구)

  • Ko Yun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.768-775
    • /
    • 2004
  • The SSA technique in the digital circuit test is required to be repeated the input pattern stream to n bits output nodes n times in case of using a multiplexor. Because the method adopting a parallel/serial bit convertor to remove this inefficiency has disadvantage of requiring the test time n times for a pattern, the test strategy is required, which can enhance the test productivity by reducing the test time based on simplified fault detection mechanism. Accordingly, this paper proposes a test strategy which enhances the test productivity and efficiency by appling PAS (Parallel Signature Analysis) technique to those after analyzing the structure and characteristics of the digital devices including TTL and CMOS family ICs as well as ROM and RAM. The PSA technique identifies the faults by comparing the reminder from good device with reminder from the tested device. At this time, the reminder is obtained by enforcing the data stream obtained from output pins of the tested device on the LFSR(Linear Feedback Shift Resister) representing the characteristic equation. Also, the method to obtain the optimal signature analyzer is explained by furnishing the short bit input streams to the long bit input streams to the LFSR having 8, 12, 16, 20bit input/output pins and by analyzing the occurring probability of error which is impossible to detect. Finally, the effectiveness of the proposed test strategy is verified by simulating the stuck at 1 errors or stuck at 0 errors for several devices on typical 8051 digital board.

Bit-Rate Analysis of Various Symmetric ESQWs SEED under Optimized Input Power (최적 입사 광 전력 하에서의 대칭 ESQWs SEED의 비트 전송률 특성 분석)

  • Lim, Youn-Sup;Choi, Young-Wan
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.7
    • /
    • pp.66-79
    • /
    • 1999
  • We investigate the effects of high input power on the performance of optical bistable symmetric self-electooptic effect devices (S-SEEDs) using extremely shallow quantum wells (ESQWs). In this study, we consider the four ESQWs SEEDs; anti-reflection (AR)-coated ESQWs S-SEED, back-to-back AR coated ESQWs S-SEED, asymmetric F뮤교-Perot (AFP) ESQWs S-SEED, and back-to-back AFP-ESQWs S-SEED. As the input power increases, device performances such as on/off contrast ratio, on/off reflectivity difference are seriously degraded because of ohmic heating and exciton saturation. On the other hand, switching speed of the device increases up to certain value and then begins to decrease. With reasonable optimization of the input power for the best switching speed operation of the devices in a cascading optical interconnection system, we simulate and analyze the system bit-rate of the various ESQWs S-SEEDs, for a mesa of $5{\times}5{\mu}m^2$ size, changing the namber of quantum wells for the external bias of 0 V and -5V.

  • PDF