• 제목/요약/키워드: Input data decision

검색결과 442건 처리시간 0.026초

다중외적연관성규칙을 이용한 불필요한 입력변수 제거에 관한 연구 (A study on removal of unnecessary input variables using multiple external association rule)

  • 조광현;박희창
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권5호
    • /
    • pp.877-884
    • /
    • 2011
  • 의사결정나무는 데이터마이닝의 대표적인 알고리즘으로서, 의사결정 규칙을 도표화하여 관심대상이 되는 집단을 몇 개의 소집단으로 분류하거나 예측을 수행하는 방법이다. 일반적으로 의사결정나무의 모형 생성 시, 입력 변수의 수가 많을 경우 생성된 의사결정모형은 복잡한 형태가 될 수 있고, 모형 탐색 및 분석에 있어 어려움을 겪기도 한다. 이때 입력변수들 간의 내재적인 관련성은 없으나, 외적 변수에 의하여 각 변수가 우연히 어떤 다른 변수와 연결됨으로써 관련성이 있는 것으로 나타나는 것을 종종 볼 수 있다. 이에 본 논문에서는 의사결정나무 생성 시, 입력 변수에 대한 외적 관계를 파악할 수 있는 다중외적연관성규칙을 이용하여 의사결정나무 생성에 불필요한 입력변수를 제거하는 방법을 제시하고 그 효율성을 파악하기 위하여 실제 자료에 적용하고자 한다.

건설기계 조립라인의 동영상 기반 시뮬레이션 입력 모델링 절차 연구 (A Study of a Video-based Simulation Input Modeling Procedure in a Construction Equipment Assembly Line)

  • 김호영;이태훈;강봉권;이주호;홍순도
    • 한국빅데이터학회지
    • /
    • 제7권1호
    • /
    • pp.99-111
    • /
    • 2022
  • 불확실성과 복잡성이 존재하는 제조시스템의 생산성 분석과 의사결정을 위하여 시뮬레이션 기법이 활용될 수 있다. 이러한 시스템의 시뮬레이션을 위해 대상의 특성을 반영하는 입력 모델링 과정이 필요하다. 하지만 건설기계 조립라인과 같은 수작업 중심과 긴 리드타임을 가지는 복잡한 환경에서는 시뮬레이션에 활용할 데이터의 수집이 제한된다. 본 연구는 입력 데이터의 수집이 어려운 환경에서 동영상 데이터를 이용한 시뮬레이션 입력 모델링 절차를 제안한다. 동영상 데이터 기반 작업분석을 통해 측정시간을 정미시간과 표준시간으로 산정하고, 시뮬레이션의 입력 분포로 활용할 수 있다. 제안하는 절차로 산정된 확률분포를 시뮬레이션에 이용하여 대상 시스템의 주요 생산성 지표를 분석하였다. 본 연구에서 제안하는 절차는 데이터가 적은 상황에서 시뮬레이션을 활용한 생산성 분석으로 의사결정 보조에 도움을 줄 것으로 기대된다.

Neural Network-based Decision Class Analysis with Incomplete Information

  • Kim, Jae-Kyeong;Lee, Jae-Kwang;Park, Kyung-Sam
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1999년도 춘계공동학술대회: 지식경영과 지식공학
    • /
    • pp.281-287
    • /
    • 1999
  • Decision class analysis (DCA) is viewed as a classification problem where a set of input data (situation-specific knowledge) and output data (a topological leveled influence diagram (ID)) is given. Situation-specific knowledge is usually given from a decision maker (DM) with the help of domain expert(s). But it is not easy for the DM to know the situation-specific knowledge of decision problem exactly. This paper presents a methodology fur sensitivity analysis of DCA under incomplete information. The purpose of sensitivity analysis in DCA is to identify the effects of incomplete situation-specific frames whose uncertainty affects the importance of each variable in the resulting model. For such a purpose, our suggested methodology consists of two procedures: generative procedure and adaptive procedure. An interactive procedure is also suggested based the sensitivity analysis to build a well-formed ID. These procedures are formally explained and illustrated with a raw material purchasing problem.

  • PDF

Correlation Analysis of the Frequency and Death Rates in Arterial Intervention using C4.5

  • Jung, Yong Gyu;Jung, Sung-Jun;Cha, Byeong Heon
    • International journal of advanced smart convergence
    • /
    • 제6권3호
    • /
    • pp.22-28
    • /
    • 2017
  • With the recent development of technologies to manage vast amounts of data, data mining technology has had a major impact on all industries.. Data mining is the process of discovering useful correlations hidden in data, extracting executable information for the future, and using it for decision making. In other words, it is a core process of Knowledge Discovery in data base(KDD) that transforms input data and derives useful information. It extracts information that we did not know until now from a large data base. In the decision tree, c4.5 algorithm was used. In addition, the C4.5 algorithm was used in the decision tree to analyze the difference between frequency and mortality in the region. In this paper, the frequency and mortality of percutaneous coronary intervention for patients with heart disease were divided into regions.

산업용 CR영상의 기하학적 데이터 분석과 의사결정나무에 의한 측정 패턴인식 (Measuring Pattern Recognition from Decision Tree and Geometric Data Analysis of Industrial CR Images)

  • 황중원;황재호
    • 전자공학회논문지CI
    • /
    • 제45권5호
    • /
    • pp.56-62
    • /
    • 2008
  • 의사결정나무를 구성하여 강판튜브 비파괴평가에 사용하는 산업용 CR영상의 측정 패턴인식을 도모한다. 본래 비파괴평가는 기계학습기법에 의한 패턴식별과 그 분류에 적합한 분야이다. 의사결정나무의 속성들은 비파괴평가 테스트 절차로부터 취한다. 방사선조사 입사각, 경사도 및 거리 둥의 기하학적 특성들은 입력 영상 데이터 분석으로부터 추정한다. 이 요소들은 대상 입력을 의사결정나무에서 미리 정해진 분류에로 정확히 그리고 쉽게 분류가 이루어지도록 한다. 이 알고리즘은 비파괴평가 결과의 특성화를 간단히 하며 특성 결정을 간편하게 한다. 실험 결과는 제안한 알고리즘의 유용성을 보였다.

OPKFDD를 이용한 불리안 함수 표현의 최적화 (An Optimization of Representation of Boolean Functions Using OPKFDD)

  • 정미경;이혁;이귀상
    • 한국정보처리학회논문지
    • /
    • 제6권3호
    • /
    • pp.781-791
    • /
    • 1999
  • DD(Decision Diagrams) is an efficient operational data structure for an optimal expression of boolean functions. In a graph-based synthesis using DD, the goal of optimization decreases representation space for boolean functions. This paper represents boolean functions using OPKFDD(Ordered Pseudo-Kronecker Functional Decision Diagrams) for a graph-based synthesis and is based on the number of nodes as the criterion of DD size. For a property of OPKFDD that is able to select one of different decomposition types for each node, OPKFDD is variable in its size by the decomposition types selection of each node and input variable order. This paper proposes a method for generating OPKFDD efficiently from the current BDD(Binary Decision Diagram) Data structure and an algorithm for minimizing one. In the multiple output functions, the relations of each function affect the number of nodes of OPKFDD. Therefore this paper proposes a method to decide the input variable order considering the above cases. Experimental results of comparing with the current representation methods and the reordering methods for deciding input variable order are shown.

  • PDF

Neural Network-based Decision Class Analysis with Incomplete Information

  • 김재경;이재광;박경삼
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 춘계공동학술대회-지식경영과 지식공학
    • /
    • pp.281-287
    • /
    • 1999
  • Decision class analysis (DCA) is viewed as a classification problem where a set of input data (situation-specific knowledge) and output data(a topological leveled influence diagram (ID)) is given. Situation-specific knowledge is usually given from a decision maker (DM) with the help of domain expert(s). But it is not easy for the DM to know the situation-specific knowledge of decision problem exactly. This paper presents a methodology for sensitivity analysis of DCA under incomplete information. The purpose of sensitivity analysis in DCA is to identify the effects of incomplete situation-specific frames whose uncertainty affects the importance of each variable in the resulting model. For such a purpose, our suggested methodology consists of two procedures: generative procedure and adaptive procedure. An interactive procedure is also suggested based the sensitivity analysis to build a well-formed ID. These procedures are formally explained and illustrated with a raw material purchasing problem.

  • PDF

퍼지의사결정을 이용한 교량 구조물의 건전성평가 모델 (Integrity Assessment Models for Bridge Structures Using Fuzzy Decision-Making)

  • 안영기;김성칠
    • 콘크리트학회논문집
    • /
    • 제14권6호
    • /
    • pp.1022-1031
    • /
    • 2002
  • 본 연구에서는 분규ㆍ회귀목-적응 뉴고 퍼지추론 시스템을 사용하여 교량 구조물에 대한 유용한 모델을 제시하였다. 퍼지결정목은 데이터집합의 입력영역이 서로 다른 영역으로 분류되고 하나의 부호나 값으로 나타내지며 데이터 정점에서 특정화시키기 위한 활동영역으로 할당되기도 한다. 분류문제로 사용되는 결정목은 가끔 퍼지결정목이라고 불려지는데, 각 최종점은 주어진 특정백터의 예측등급을 나타낸다. 회귀문제에 사용되는 결정목을 가끔 퍼지회귀목이라고 하는데, 이 때 최종점 영역은 주어진 입력백터의 예측 출력 값을 상수나 방정식으로 나타낼 수 있다. 분류ㆍ회귀목은 관련된 입력값을 선택하여 입력구역에서 분류 할 수 있는 반면에 적응 뉴로 퍼지추론 시스템은 회귀문제를 수정하고 이틀의 회귀문제를 보다 연속적이면서 간략하게 만들 수 있음을 주목해야 한다. 따라서 분류ㆍ회귀목과 적응 뉴로 퍼지추론 시스템은 서로 상보적인 것이며, 이들의 조합은 퍼지모델링을 위해 실직적인 근사식으로 구성된다.

국방특화연구센터의 효율성 분석 및 연구 성과 향상방안 연구 (Efficiency Analysis of the Defense Research Center and Improvement of Performance)

  • 최석철;배윤호
    • 한국군사과학기술학회지
    • /
    • 제11권6호
    • /
    • pp.117-126
    • /
    • 2008
  • Recently, the investment and importance have been increasing concerning the researches which are based on fundamental studies. In defense science and technology development, the defense research centers are involved in a large portion of developing the potential capability such as defense applied technology, enhanced human resource, etc. In this paper, we analyzed the relative efficiency of 9 research centers(9 DMU : Decision Making Unit) supported by the defense budget, using DEA(Date Envelopment Analysis) method especially with the CCR-I(Charnes, Cooper, Rhodes-Input) model. Some variables are selected such as budget(input data), patent, article and human resource(output data) to be analyzed. Conclusively, the needs to identify performance-indicators, increase incentives to promote the performance and induce enthusiastic participation in defense science and development projects, are suggested via a relative efficiency analysis.