Neural Network-based Decision Class Analysis with Incomplete
Information
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Abstract

Decision class analysis (DCA) is viewed as a classification problem where a set of input data (situation-specific
knowledge) and output data (a topological leveled influence diagram (ID)) is given. Situation-specific knowledge is usually
given from a decision maker (DM) with the help of domain expert(s). But it is not easy for the DM to know the situation-
specific knowledge of decision problem exactly. This paper presents a methodology for sensitivity analysis of DCA under
incomplete information. The purpose of sensitivity analysis in DCA is to identify the effects of incomplete situation-specific
frames whose uncertainty affects the importance of each variable in the resulting model. For such a purpose, our suggested
methodology consists of two procedures: generative procedure and adaptive procedure. An interactive procedure is also
suggested based the sensitivity analysis to build a well-formed ID. These procedures are formally explained and illustrated

with a raw material purchasing problem.
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1. Introduction

The decision analysts have observed that a
constructed decision model such as an influence diagram
(ID) is usually applicable to only one specific problem
even if the formulation of a real decision problem needs
much time, efforts, and cost. They often investigate that
some prior knowledge from the experience of modeling
IDs can be utilized to resolve other similar decision
problems. From this investigation, we considered a
decision analysis to combine the prior knowledge so that
we handle a set of similar decision problems
simuitaneously (Kim and Park, 1997).

Decision class analysis (DCA) regards decision
analysis as an integrator of decision knowledge and treats
a set of decisions having some degree of similarity as a
single unit (Holtzman, 1989). DCA helps decision analysts
to inexpensively model a decision problem from a
cumulative set of decisions. Our previous study used a
neural network for analyzing a class of decisions which
results in the generation of IDs in the topological level
(Kim and Park, 1997; Kim et. al., 1999). We considered
DCA as a classification problem where a set of input data
(situation-specific knowledge) and. output data (a
topological leveled ID). So the quality of resulting ID
depends on the quality of input data given from decision
maker (DM) with the help of domain expert(s). But it is

not easy for the DM to know the situation-specific
knowledge of a decision problem exactly. The input data
may be imprecise vague or incomplete.

In this paper, we suggest a procedure for the
sensitivity analysis of DCA with incomplete information.
Sensitivity analyses identify those input parameters to
which perturbations of the base-case value causes the
greatest impact on the output measure. The input
parameters of DCA are situation frames (i.c., the DM's
circumstances) of an individual specific decision problem,
and output parameters are abstracted corresponding
specific decision variables (i.e., topological leveled chance
nodes and arcs in influence diagram) for solving that
problem. In the previous studies, DM is compelled to
input the situation frame value even if he/she does not
know them exactly (Chung et. al., 1992; Kim, 1991; Kim
and Park, 1997). Based on next, analyzing sensitivity in
DCA perturbs incomplete situation frames and examining
the effect on the abstracted corresponding specific
decision variables for solving the individual decision
problem. As a result, the relative importance or
sensitiveness of each decision variables (chance nodes and
arcs) can also be known, which could result in the ID.
These two steps of our methodology are named as
generative procedure and adaptive procedure in sensitive
analysis. Based on the result of sensitivity analysis, DM
can modify the resulting ID with the help of domain
experts and his/her decision-specific knowledge. This
interactive procedure is also suggested to aggregate the
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resulting IDs from the sensitivity analysis. The properties
of our suggested procedure are summarized as follows:
First, it is possible to model an ID for the specific decision
problem with less time and costs. Second, domain experts
easily append their additional information and knowledge
in the adaptive process of resulting ID. Third, the
sensitiveness or robustness of each variable of a resulting
ID can be also known. So little resources will be focused
on analyzing the sensitive variables, i.e., robust variables
of an ID. We applied our procedure to a real world
decision class problem, a raw material purchasing problem
(Chung et. al., 1992).

This paper unfolds as follows: Section 2 contains the
background, brief illustrations of an influence diagram, a
sensitivity analysis in decision analysis, the concept of
DCA, and neural net in implementing DCA. In Section 3,
we describe a concept of sensitivity analysis in DCA, and
present a procedure for the implementation of sensitivity
analysis in DCA. An interactive procedure adapting IDs
was also proposed in section 3. The procedure is
illustrated with a raw material purchasing problem in
section 4. Finally, the conclusions are given in section 5.

2. Background

2.1. Influence Diagram

Influence diagrams (IDs) are developed as a model
for representing complex decision problems based on
incomplete and uncertain information from a variety of
sources (Howard & Matheson, 1984).

Inventory
level

Contract
amount

Internationa
price

[Figure 1] An influence diagram of a raw material
purchasing problem.

Figure 1 shows an ID of a raw material purchasing
problem originally described by Kim (1991). The ID can
be viewed from three levels: topological, functional, and
the numerical level (Howard & Matheson, 1984; Kim &
Park, 1997). At the topological or relational level the
nodes in the diagram represent the key variables in the
system being modeled and the arcs or arrows identify
conditional influences among them. The nature of these
influences is specified at the functional level and further
quantified at the numerical level. Each level would
provide a stage of decision making in a given domain.

At the topological level, the ID is defined as an
acyclic digraph G = (¥, 4), where N is a finite set of nodes
and A is a set of arcs, A < NxN. This visual level of the
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ID explicitly reveals the flow of information, influences,
and overall structure of the decision problem. The nodes
are partitioned into three sets C, D and V. The chance node
ceC, which is circular shape, represents uncertain or
certain states and the rectangular-shaped decision node de
D reveals variables whose values are chosen by the DM.
The diamond-shaped value node veV represents the
objective to be maximized in expectation by the DM.

The functional level is concerned with how nodes are
related. At the final level, numerical level, probability
distributions from prior information, decision values and
costs, and the utilities of the DM are assessed numerically
for each node. Well-formed influence diagram (WFID) is
a syntactically correct, completely assessed ID whose
nodes have fully consistent distributions and outcomes
(Holtzman, 1989). But in this research, we use WFID to
refer a well-constructed decision model from which a
decision is made without further modification of the
model.

The traditional interactive procedure to generate an
ID consists of a sequence of value-preserving
transformation between domain expert(s), decision
analyst(s), and DM (Kim, 1991). The value preserving
transformation is a transformation of the ID which
maintains feasibility and do not modify the optimal policy
or maximal expected value. The process to expand an ID
is made through the repetitive operation of adding nodes,
and splitting nodes. Once the structure is reasonable, the
diagram is_further refined in more detail through the
operation of node removal, merging nodes, and reversing
an arc as well as adding and splitting nodes. It was shown
that these operations satisfy the value-preserving
transformation (Kim, 1991; Kim et. al., 1997; Shacter,
1986).

Once a WFID is built, the diagram is manipulated
and evaluated for determining the optimal decision
strategy. A direct solution procedure to automate IDs has
been proposed by Olmsted (1984) and formalized by
Shachter (1986). The procedure consists of value-
preserving transformations, node removal and arc
reversals, which correspond to the rollback procedure in
decision tree models.

2.2. Sensitivity Analysis in Decision Analysis

The decision analysis process, presented by Howard
(1988), iterates through formulation, evaluation, and
appraisal phases. The focus of the decision analysis
process is the conversation about the decision situation
that leads to clarity of action. Sensitivity analyses identify
those input parameters to which perturbations of the base-
case value causes the greatest impact on the output
measure. In each phase of the decision analysis process,
sensitivity analysis is used to arrive at contingent
conclusions or to tell its own story. In the formulation
phase, deterministic sensitivity analysis helps the analyst
identify the uncertainties that have the largest effects on
the value of each alternative and to observe whether any
alternative is dominated by the others. Usually, five to
seven critical uncertainties are modeled probabilistically;
the remaining uncertainties are set at deterministic values.
The analyst creates a probabilistic model of the decision
and assesses probability distributions for the critical
uncertainties. Recently a sensitivity analysis to relevance
is developed by Lowell (1994). Before assessing



probability distributions for the critical uncertainties,
analyzing sensitivity to identify which relevance
relationships among the critical uncertainties need to be
assessed and modeled. In the evaluation phase, the analyst
determines the alternative that is logically consistent with
the decision basis constructed in the formulation phase.
Within the appraisal phase, one could analyze sensitivity
to conditional probabilities, to risk attitude, and to time
preference. For a discussion of sensitivity analysis, see
Howard (1988).

2.3. Neural Network in DCA

The formulation step in decision analysis has been
accomplished manually, through lengthy interviews
among decision analyst(s), DM, and domain experts who
are intimately familiar with the problem domain. The
model construction in practice is known to be a most
complicated and burdensome process. Furthermore, the
decision analyst may observe that a constructed decision
model such as IDs is usually applicable to only one
specific problem (Kim, 1991). Holtzman (1989) describes
decision class analysis (DCA) which regards a decision
analysis as an integrator of decision knowledge and treats
a set of decisions having some degree of similarity as a
single unit. In this paper, similarity among decision
problems are interpreted in such a way that one or more
key variables relevant to a given decision problem are
admitted into the model of another decision problem.
Specifically, an ID involves one or more nodes (i.e. key
variables) being in another ID. We further denote a class
of decision problems to be the collection of such IDs that
their nodes are partially (or entirely) owned by each
diagram within the class (Kim and park, 1997).

Whereas the end result of an individual decision
analysis is a decision, the result of a DCA is an individual
decision analysis. Thus, analyzing a class of decisions
occurs at a higher level of abstraction than analyzing a
single decision. In the construction of a decision model,
typically, domain experts provide domain-specific
knowledge, while a DM furnishes situation-specific
knowledge, i.e., information about his or her current
situation environment.

At the point of decision making with the ID,
variables in the ID are changeable from the current
specific situations. The specific situations may be decision
nodes and situation frames. When given the situation-
specific information of the DM, the DCA should abstract
the corresponding specific decision variables for solving
the individual problem. This interprets DCA as a
classification problem. In contrast to rule-based systems,
neural networks have a broad response capability because
of their capability to provide the general classification of a
set of inputs. They can capture a large number of cases
quickly and provide reasonably accurate responses, even
when incomplete or previously unseen inputs are given.
More specific on the perspective of implementing a DCA
using neural network appears in Kim & Park (1997).

3. Sensitivity Analysis in Decision Class
Analysis

3.1. Sensitivity Analysis in DCA
Analyzing a class of decisions is composed of three
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steps: First, the DM decides decision node(s) to represent
the decision-making purpose of a given problem. Second,
the DM suggests knowledge of specific situations
occurred at current circumstance and situation. Third, to
obtain a single decision analysis, an ID is built based on
the decision and the situation-specific knowledge. The
third step is made of two phases: Phase I is to search for
relevant chance and value nodes of the individual ID from
the given decision nodes and specific situations (i.e.,
situation frames denoted in Section 2.3). Phase II elicits
arcs among the nodes.

At second step, the well-represented situation-
specific knowledge plays a major role to elicit a ID
through the DCA. However, it is not easy for the DM to
know the situation-specific knowledge exactly. For
example, let sl and s2 to be situation frames, where st is
“variation of domestic economy”, and s2 is “variation of
foreign economy™. It will be incorrect if we use an ID
based on imprecise information like “sl and s2 is
important,” when we don’t have precise knowledge about
the value of s1 and s2. Instead, it is more realistic to derive
IDs from the combinations of each possible value of sl
and s2, then adapt the derived IDs considering domain
specific knowledge of DM and domain experts. In this
example, we can get four IDs from the four situations, like
only sl is important, only s2 is important, both sl and s2
are important, and both sl and s2 are unimportant. Our
suggested methodology allows situation frames have
incomplete values. When the DM does not have a
complete information, it is another burden for him (her) to
represent the situation-specific knowledge exactly. The
basic idea of our methodology makes DCA to be useful
and convenient for the DM.

Analyzing sensitivity in DCA starts from perturbing
incomplete situation frames and examining the results of
the abstracted corresponding specific decision variables
(i.e., chance nodes and arcs in our problems) of the
derived individual ID. It examines whether these
perturbations cause variation in the presence of variables
such as nodes or arcs in ID. So instead of focusing limited
resources on modeling, quantifying and analyzing the
uncertainty in these situation-specific sensitive variables,
it makes DM focus on the modification or adaptation of
resulting IDs. Furthermore, the result of sensitivity
analysis in DCA can be used in sensitivity analysis in
decision analysis, because the sensitivity analysis for DCA
tells which nodes (or arcs) are important or not.

3.2. Generative Procedure in Sensitivity Analysis

Recall the notation of the ID: on the nodes, decision
d, €D, chance ¢, €C and value v, €V; and the arcs a(i)
€A where i and j are the indices of the nodes. Denote a set
S in which there are one or more situation frames s, € S .
We further define the following sets:

DS={d, eD|k=1,.,p} s, eSlk=1..,n}

CV={c, eClk=1,..,.q}v{v, eV|k=1,..,r},

DCV={d, eD|k=1,..,p}wCV,

ARC = { a(ifyed | i<, i=1, ., ptgtr-l; j=2, ..,

pratr},

where p, g, r, n are respectively the number of decision,

chance, value nodes, and situation frames. The size of

ARCis|ARC = ,,,,C, (where C is combination operator).
For each situation frame, s, € S, three values are



possible which are 1, 0, and ‘u’. It is 1 if it is present, it is
0 if it is not present, and it is ‘v’ if it is unknown whether
it is present or not. If the value of s, is “u’, then it can have
both 1 and 0. Therefor, if t unknown situation frames exist
among n situation frames, 2' situation sets are possible,
which is a combination of their possible values. We call
the situation frame of which the value is ‘v’ as s,,,, where i
= 1, ..., . The meaning of the value of s, and that of chance
node should be distinguished. If the value of s, is close to
1, the certainty of its relation to a current problem is to be
increased. But as the value of chance nodes is close to 1,
the certainty of its presence in the resulting ID is
increased. The value of arc a(i/) ranges from —1 to 1. If its
direction is (ij) then a(ij) has positive value. if its
direction is (j,/) then a(i,j) has negative value. And if ith
node and jth node is independent, i.e., if the arc between i
and j does not exist then a(i,j) becomes 0.
Based on the above notations, we suggest the

following procedure to generate possible IDs.
Step(0) Set s,;, =0 foreachs,, €S, i=1,..

Setk=0.

SetL=1.
Step(1) Generate L™ situation set S™.

1.0 Seti=1.

1.1Lets,,, = (k mod 2).

1.2 Letk=(k —(k mod 2))/ 2.

1.3 If k = 0 then goto Step (2).

1.4 Otherwise i =i+ 1. Goto 1.1.
Step(2) Perform Phase 1.
Step(3) Perform Phase II to build an extreme ID, ID".
Step(4) If L= 2! then Stop.

Otherwise k =k +1.

Goto Step(1).

2

Step(0) and Step(l) generate 2' sets of situation
frames for t unknown situation frames. Step(0) and
Step(1) are carried out iteratively. Based on each situation
set, an ID is built from Step(2) and Step(3). Both steps are
done by two trained feed-forward neural nets (shortly
termed NNs): NN [ for Phase I and NN 11 for Phase II. The
two neural nets are trained by the training set obtained
from the knowledge of decision participants, using the
back-propagation algorithm. We call this ID as an extreme
ID. Step(4) is about stopping condition of the procedure,
which stops until 2 extreme IDs are built. An initial ID
built on the imprecise information of ‘u’ situation frames
is just one of extreme IDs. As DM is not certain of the
value of ‘w’, it is not suggested to use an initial ID. Instead
it is preferable to do a sensitivity analysis, i.e., generate all
the extreme IDs based on all the possible sets of t
imprecise situation frames, and then aggregate them into
an ID considering DM’s domain specific knowledge. Next
section is about adaptation procedure. Before that, we
explained phase I and phase II in brief.

3.2.1. Phase I

In order to search for relevant chance and value
nodes from the given decision nodes and situation frames,
NN I is used to represent the relation between chance and
value nodes, and decision nodes and situation frames. The
training set of input and desired output pairs to learn NN 1
is represented as {(DS,, CV ) m=1, .., M,}, where M, is
the training set size, and the DS, e(x: 0<x<7Y*" and CV e
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(x: 0sx<I)™" respectively are the valued vector of DS and
CV. These training pairs can be generated from the case
studies of the similar problems within the class, with the
help of the DMs and domain experts.

3.2.2 Phase I1

In this phase, a trained NN II has to be prepared to
elicit the influences among output nodes of Phase 1. The
training set of input and desired output to learn NN II is
given by {(DCV,, ARC, ) m =1, ..., M,}, with the DCV, e
(x: 0se<Iy**" and ARC,e(x: -1<x</)R9. Namely, the
desired output of Phase I becomes the input of Phase II,
and the desired output of Phase II is the strength of arcs of
an ID. Hence the training pairs can be generated
consecutively based on those of Phase I. A more detail of
Phase I and Phase II including training process with a case
example is expressed in our previous paper (Kim & Park,
1997).

3.3. Adaptive Procedure in Sensitivity Analysis

We call the initial ID generated from imprecise value
of ‘u’ an initial ID, IDy, . Three definitions are given
before explaining the aggregation process for reconciling
different extreme IDs.

Definition: A basic ID, ID, is the minimal ID which is
the intersection of all the extreme IDs.
IDy,s =DCV,, U ARG, .

DCVy, = (fDCV, , where L is the number of situation
sets and DCV is the DCV of kth situation set.

ARCy,s = NFARC, , where L is the number of situation
sets and ARCy is the ARC of kth situation set.

Definition: A super ID, IDg, is the maximal ID which is
the union of all the extreme IDs.
IDgp = DCV g U ARCp.

DCVSUP = UILDCVk :
ARCg, = \ULARC, .

Definition: A supplementary ID, IDg, is the difference of
IDgp and Dy .

IDgp,, = IDgyp — Dps -

DCVqpy =DCVyp - DCViyys.

ARCgpy = ARCyyp - ARC

A basic ID is built by finding the intersection of all
extreme IDs. It means the overlapped or intersected part of
extreme IDs. The super ID, the union of all extreme IDs,
represents a possible extent of situation information or
knowledge of the given problem. The difference between
super ID and basic ID, IDg, implies the degree of
incompleteness or impreciseness of DM’'s knowledge
about situation frames of a given decision problem. If DM
know situation frames exactly for a given decision
problem, then IDg, does not exist because only one
extreme ID is generated. As DM has the knowledge of
domain specific knowledge, he/she prefers to modify the
IDy,s or IDg,, instead of using IDp,. The procedure
suggests for the DM to modify the ID;,, for the given
decision problem. The basic idea of this procedure is that
it starts from IDg,g which is stable or robust not with
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standing ‘v’ value. IDg,  corresponds to sensitive
variables in the sensitivity analysis of decision analysis.
Next the procedure adds up the accepted part of IDg, to
make the 1Dy, ; to be a WFID.

The procedure is as follows. It iterates until DM is
satisfied. We let iteration number h.

Step(0) Set h=1.
Obtain IDg, ¢, and Dy, from L extreme IDs.

Step(1) Obtain IDgy, ,, from IDg, g, and IDg,..

Step(2) Select a node or an arc arbitrary from DCVg,
and ARCg, ,, respectively.

Step(3) DM decides whether the node and the arc is
accepted or not.

Step(4) Modify ID,,s , by applying model expansion
procedure considering result of Step(3).

Step(5) If IDgy 4, is @ null set then stop. IDg,q, is @
WFID.

Otherwise set h=h+1.
Go to Step(2).

Step(2) selects a node or an arc from IDg, . In
Step(2), a selection is made arbitrary. Another heuristic
selection method is considering the priority of each node
and each arc. The priority is determined based on “weight”
of each element. For example, if node A is present in more
extreme IDs than B then, the weight of node A is higher
than node B. The weight of each element in DCVg, 4, and
ARC, .. provides a helpful information to DM, when
he/she adds up the IDy,q4,. In Step(5), the fact that IDg,
is a null set means that the procedure is terminated
because there is no remaining nodes or arcs in the sets of
DCV and ARCg, .

Figure 2. shows the overall procedure of the
sensitivity analysis to build a WFID.

Decision problem

| Decide decision node(s) |

v
]

SPL(h)

1

Input situation frames

<->| Trained NN [ & 11 I

l Generate extreme situation sets ]

4—»{ Trained NN1 & 11 I

Sensitivity Analysis I

Well-Formed ID

[Figure 2] Overall procedure for sensitivity analysis in
DCA

4. An Illustrative Example

4.1 A Raw-Material Purchasing Problem

A raw-material purchasing problem in a textile
cooperation: The company makes some types of synthetic
products. The main raw materials of these products are

TPA (terephthalic acid), DMT (dimethy terephthalate) and
EG (ethylene glycol). Presently, the raw materials are
imported from the foreign market.

[Table 1] Summary of the raw material purchasing
problem.

Node name Symbo! Content

Decision di Contract amount
d2 Country
Chance c3 Product demand
c4 Inventory level
c5 International price
c6 Spot price
c7 Contract price
cg Reliability
c9 Transportation time
c10 Quality
Value V1l Value
Situation  s] Purchasing TPA raw-material
s2 Purchasing DMT raw-material
s3 Purchasing EG raw-material
s4 Variation of OPEC policy
s5 Variation of domestic economy
s6 Variation of foreign economy
s7 Variation of opposite company policy
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The state related with the decisions is varied with the
types of goods and the affecting specific situations.

According to a given raw material and the specific
situation, variables affecting the decision made a
difference. In this problem, decisions of a similar type are
to be made frequently and these decisions strongly depend
on the specific situations (situation frames).

Once the DCA is implemented using neural
networks, we can greatly reduce the time and save large
amounts of duplicate efforts for modeling an ID for an
individual decision problem. Using the notations described
in the previous section, we restrict the boundary of the
raw-material purchasing problem in Table 1.

4.2 Generative Procedure for the Example

In Training NN I, the number of input processing
elements is [DS] = 9 (the number of decision nodes and
situation frames) and the number of output processing
elements is |CV] =9 (the number of chance and value
nodes) (see Table 1). In training NN II, the number of
input processing elements is [IDCV|=11.

Table 2 shows a current situation frames of a raw
material purchasing decision problem. In this problem, the
textile cooperation has to decide country and amount.

[Table 2] A situation frames of the example.

Symbol Content

d] Contract amount Certainly yes
d2 Country Certainly yes
s1 Purchasing TPA raw-material Certainly no
s2 Purchasing DMT raw-material Certainly no
s3 Purchasing EG raw-material Certainly yes
s4 Variation of OPEC policy Certainly yes
s5 Variation of domestic economy Probably yes
s6 Variation of foreign economy Probably no
s7 Variation of opposite company policy Certainly yes
Given the situation frame with incomplete

information, s5 and s6, we obtained the output of Phase I
using NN I. The output became the input of Phase II, and
NN II elicited arcs among the nodes. Figure 1 shows the



resulting ID, an initial ID. The initial ID is generated
under incomplete information of situation frame,
“variation of domestic economy” and “variation of foreign
economy”. As s5 and s6 are incomplete situation frames,
we performed the generative procedure in sensitivity
analysis. As a result, four extreme situation sets are
generated. The extreme situation sets and the DCV of the
extreme IDs are presented in Table 3.

[Table 3] Extreme situations and extreme IDs.

s152s3s4s5s6s7 DCV of the extreme ID

0011001 {dl,d2c5,c7,vIl} D,
0011101 {dl,d2 cd,c5 c7, vIl} ID,
0011011 {dl,d2 c3,c5,c6,¢c7, vll} ID,

0011111 {dl,d2,c3,c4,c5, ¢6,c7,c8 vlil}ID,

4.3 Adaptive Procedure for the Example

In aggregation process, four extreme IDs are
generated using trained NN I and NN II based on extreme
situation sets. All the extreme IDs reflect the possible
variation of the incomplete information, s5 and s6. To
analyze the sensitivity, an adaptive procedure is executed.
First, IDgypg) [Dpaseoy and IDgpy ) are obtained from the
four extreme IDs. Figure 3 graphically represents the
IDgypop  IDpasey and  IDgp . The entire diagram
represents IDgyp). The IDg,g consists of the following
DCVgas0y and ARCy,g(), Which is presented as bold line
in Figure 3.

DCVBAS(O)z {d,.d,.c5, ¢,V
ARGy, 40 = { a(1,2), a(1,5), a(1.,7), a(1,11), a(2,5), a(2,7),
a(2.11), a(5.7), a(5,11), a(7,11) }.

Therefore the IDgy o is obtained from the difference
between the IDgpe, and the Dy, as follows;

DCVSPL(O)= { c} 2 c4 * c6 > c8 }
ARCgp g = { a(1,3), a(1.4), a(1.6), a(2.8), a(3,4), a(4,11),
a(5.6), a(6,11), a(8,11) }.

a(4,11)

[Figure 3.] Initial basic ID and super ID

Among the IDgyp, four chance nodes, { c;, ¢, , ¢,
¢, } and nine arcs, { a(1,3), a(1,4), a(1,6), a(2,8), a(3.4),
a(4,11), a(5,6), a(6,11), a(8,11) } are included in IDgpy .
Adaptive procedure is carried out to add up the IDg, until
the IDg,, becomes a null set. In the adaptive procedure, the
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nodes ¢,, ¢, and ¢4 are accepted by DM. Also the arcs,
a(1,3), a(1,4), a(1,6), a(3,4), a(4,11), a(5,6), a(6,11), are
accepted also. However, DM regards that node ¢, and arcs,
a(2,8), and a(8,11) are not important. Therefore, nodes c,,
Cs € and ¢, are removed from the DCVg,, so that the
DCVg, and ARCgy, became a null set. In summary, the
nodes ¢, and ¢, are added to the IDy,. Figure 4 represents
the final WFID for the raw material purchasing problem.

Inventory
level

Product
demand

[Figure 4] Final ID of the raw material

purchasing
problem :

5. Conclusions

Analyzing a class of decisions has been applied to
model a decision problem efficiently. To make a resulting
ID to represent a real problem well, it is essential to
suggest an exact situation-specific knowledge. This paper
proposed a procedure for the sensitivity analysis of DCA
with incomplete information. The use of neural networks
to generate IDs in the topological level results in a good
performance. But the generated ID from imprecise
situation-specific knowledge does not usually represent
well a real problem. So it needs a sensitivity analysis by
perturbing the value of imprecise situation-specific
variables. Our suggested procedure is helpful when DM
wants to reflect their domain-specific knowledge or
information in the modeling process. With the suggested
procedure, the DM can easily perform a sensitivity
analysis of DCA and obtain a well represented ID of a
specific decision problem. Our procedure is applied to a
real world decision class problem. The interactive
procedure combined with neural networks is expected to
be a basic methodology of intelligent decision support
system to build a decision model. Developing an
intelligent decision support system based on this research
is a subsequent research area. Besides on this, other
promising research arca are to adapt a case based
reasoning approach to define a class of decisions.
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