• Title/Summary/Keyword: Input current sensorless control

Search Result 36, Processing Time 0.024 seconds

A New Sensorless Control Scheme Using Simple Duty Feedback Technique in DC-DC Converters (DC-DC 컨버터에서 Duty Feedback 을 이용한 새로운 센서리스 제어 기법)

  • Noh Hyeong-Ju;Lee Dong-Yun;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.115-118
    • /
    • 2001
  • This paper presents a new sensorless control scheme using simple duty signal feedback technique in DC-DC converters. The proposed sensorless control scheme (DFC) has the characteristics that they show the same as operation performance of current mode control by using duty feedback technique without current sensor as well as present better dynamic response performance than conventional sensorless current mode control (SCM) in case that input source is perturbed by step change or DC input source includes the . harmonics. Also, the proposed control scheme has good noise immunity and simple control circuits since they have one feedback loop, and can be applied to all DC-DC converters. The concept and control principles of the proposed control scheme are explained in detail and the validity of the proposed control scheme is verified through several interesting simulated results.

  • PDF

Input AC Voltage Sensorless Control Scheme for a Three-Phase PWM Rectifier in Wind Power Generation System

  • Wu, YanJun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.472-476
    • /
    • 2012
  • In this paper, a sensorless control scheme for a three-phase bi-directional voltage-type PWM rectifier in wind power generation system that operates without the input AC voltage sensors (generator side) is described. The basic principles and classification of the PWM rectifier are analyzed, and then the three-phase mathematical model of the input AC voltage sensorless PWM rectifier control system is established. The proposed scheme has been developed in order to lower the cost of the three-phase PWM rectifier but still achieve excellent output voltage regulation, limited current harmonic content, and unity input power factor.

A Fuzzy-PI Control Scheme of the Three-Phase Z-Source PWM Rectifier without AC-Side Voltage and Current Sensors (교류측 전압 및 전류 센서가 없는 3상 Z-소스 PWM 정류기의 퍼지-PI 제어)

  • Han, Keun-Woo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.767-781
    • /
    • 2013
  • In this paper, we proposes the AC input voltage and current sensorless control scheme to control the input power factor and DC output voltage of the three-phase Z-source PWM rectifier. For DC-link voltage control which is sensitive to the system parameters of the PWM rectifier, fuzzy-PI controller is used. Because the AC input voltage and current are estimated using only the DC-link voltage and current, AC input voltage and current sensors are not required. In addition, the unity input power factor and DC output voltage can be controlled. The phase-angle of the detected AC input voltage and estimated voltage, the response characteristics of the DC output voltage according to the DC voltage references, the FFT results of the estimated voltage and current, efficiency, and the response characteristics of the conventional PI controller and fuzzy-PI controller are verified by PSIM simulation.

Continuous Conduction Mode Soft-Switching Boost Converter and its Application in Power Factor Correction

  • Cheng, Miao-miao;Liu, Zhiguo;Bao, Yueyue;Zhang, Zhongjie
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1689-1697
    • /
    • 2016
  • Continuous conduction mode (CCM) boost converters are commonly used in home appliances and various industries because of their simple topology and low input current ripples. However, these converters suffer from several disadvantages, such as hard switching of the active switch and reverse recovery problems of the output diode. These disadvantages increase voltage stresses across the switch and output diode and thus contribute to switching losses and electromagnetic interference. A new topology is presented in this work to improve the switching characteristics of CCM boost converters. Zero-current turn-on and zero-voltage turn-off are achieved for the active switches. The reverse-recovery current is reduced by soft turning-off the output diode. In addition, an input current sensorless control is applied to the proposed topology by pre-calculating the duty cycles of the active switches. Power factor correction is thus achieved with less effort than that required in the traditional method. Simulation and experimental results verify the soft-switching characteristics of the proposed topology and the effectiveness of the proposed input current sensorless control.

Compensation Technique for Current Sensorless Digital Control of Bridgeless PFC Converter under Critical Conduction Mode

  • Kim, Tae-Hun;Lee, Woo-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2310-2318
    • /
    • 2018
  • Critical conduction mode (CRM) operation is more efficient than continuous conduction mode (CCM) operation at low power levels because of the valley switching of switches and elimination of the reverse recovery losses of boost diodes. When using a sensorless digital control method, an error occurs between the actual and the estimated current. Because of the error, it operates as CCM or discontinuous conduction mode (DCM) during CRM operation and also has an adverse effect on THD of input current. In this paper, a current sensorless technique is presented in an inverter system using a bridgeless boosted power factor correction converter, and a compensation method is proposed to reduce CRM calculation error. The validity of the proposed method is verified by simulation and experiment.

Input AC Voltage Sensorless Control for a Three-Phase Z-Source PWM Rectifier (3상 Z-소스 PWM 정류기의 입력 AC 전압 센서리스 제어)

  • Han, Keun-Woo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.355-364
    • /
    • 2013
  • Respect to the input AC voltage and output DC voltage, conventional three-phase PWM rectifier is classified as the voltage type rectifier with boost capability and the current type rectifier voltage with buck capability. Conventional PWM rectifier can not at the same time the boost and buck capability and its bridge is weak in the shoot- through state. These problems can be solved by Z-source PWM rectifier which has all characteristic of voltage and current type PWM rectifier. By shoot-through duty ratio control, the Z-source PWM rectifier can buck and boost at the same time, also, there is no need to consider the dead time. This paper proposes the input AC voltage sensorless control method of a three-phase Z-source PWM rectifier in order to accomplish the unity input power factor and output DC voltage control. The proposed method is estimated the input AC voltage by using input AC current and output DC voltage, hence, the sensor for the input AC voltage detection is no needed. comparison of the estimated and detected input AC voltage, estimated phase angle of the input voltage, the output DC voltage response for reference value, unity power factor, FFT(Fast Fourier Transform) of the estimated voltage and efficiency are verified by PSIM simulation.

Unity Power Factor Control of Sensorless Switched Reluctance Motor

  • Jeyakumar, A. Ebenezer;Shanmuganandan, K.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1147-1152
    • /
    • 2004
  • Switched Reluctance Motors have an inexpensive, intrinsic simplicity and low cost that makes them well suited to home appliance and office applications. However the motor suffering with necessity of shaft position sensor, lead to non-linearity of operations. Further, the involvement of static converters deteriorates the operational power factor. Implementation of a sensorless algorithm, can remove the need of position sensors. Also, the drive includes a compact power factor control in the input stage by implementing Zero Current Switching Quasi-Resonant Boost Technology. This paper presented, aims at optimized low line current distortion, high power factor, low cost and a shaft position sensorless Switched Reluctance Motor drive.

  • PDF

Current Sensorless MPPT Control Method for Dual-Mode PV Module-Type Interleaved Flyback Inverters

  • Lee, June-Hee;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.54-64
    • /
    • 2015
  • This paper presents a current sensorless maximum power point tracking (MPPT) control method for dual-mode photovoltaic (PV) module-type interleaved flyback inverters (ILFIs). This system, called the MIC (Module Integrated Converter), has been recently studied in small PV power generation systems. Because the MIC is an inverter connected to one or two PV arrays, the power system is not affected by problems with other inverters. However, since the each PV array requires an inverter, there is a disadvantage that the initial installation cost is increased. To overcome this disadvantage, this paper uses a flyback inverter topology. A flyback inverter topology has an advantage in terms of cost because it uses fewer parts than the other transformer inverter topologies. The MPPT control method is essential in PV power generation systems. For the MPPT control method, expensive dc voltage and current sensors are used in the MIC system. In this paper, a MPPT control method without current sensor where the input current is calculated by a simple equation is proposed. This paper also deals with dual-mode control. Simulations and experiments are carried out to verify the performance and effectiveness of the proposed current sensorless MPPT control method on a 110 [W] prototype.

A New Sensorless Control Scheme Using Simple Duty Feedback Technique in DC/DC Converters (DC/DC 컨버터에서 Duty Feedback을 이용한 새로운 센서리스 제어기법)

  • 이동윤;노형주;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.554-562
    • /
    • 2002
  • This paper presents a new sensorless control scheme using simple duty signal feedback technique in DC/DC converters. The proposed Duty Feedback Control(DFC) has the characteristics that they show the same as operation performance of current mode control by using duty feedback technique without current sensor as well as present faster dynamic response performance than conventional Sensorless Current Mode(SCM) control in case that input source is perturbed by step change or DC input source includes the harmonics. Also, the proposed control scheme has good noise immunity and simple control circuits since they have one feedback loop, and can be applied to all DC/DC converters. The concept and control principles of the proposed control scheme are explained in detail and the validity of the proposed control scheme is verified through several interesting simulated and experimental results.

Improved Direct Torque Control for Sensorless Matrix Converter Drives with Constant Switching Frequency and Torque Ripple Reduction

  • Lee Kyo-Beum;Blaabjerg Frede
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.113-123
    • /
    • 2006
  • In this paper, an improved direct torque control (DTC) method for sensorless matrix converter drives is proposed which enables to minimize torque ripple, to obtain unity input power factor, and to achieve good sensorless speed-control performance in the low speed operation, while maintaining constant switching frequency and fast torque dynamics. It is possible to combine the advantages of matrix converters with the advantages of the DTC strategy using space vector modulation and a flux deadbeat controller. To overcome the phase current distortion by the non-linearity of a matrix converter drive, the simple non-linearity compensation method using PQR power theory are presented in the proposed scheme. Experimental results are shown to illustrate the feasibility of the proposed strategy.