• Title/Summary/Keyword: Input Nodes

Search Result 379, Processing Time 0.033 seconds

Classification and prediction of the effects of nutritional intake on diabetes mellitus using artificial neural network sensitivity analysis: 7th Korea National Health and Nutrition Examination Survey

  • Kyungjin Chang;Songmin Yoo;Simyeol Lee
    • Nutrition Research and Practice
    • /
    • v.17 no.6
    • /
    • pp.1255-1266
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: This study aimed to predict the association between nutritional intake and diabetes mellitus (DM) by developing an artificial neural network (ANN) model for older adults. SUBJECTS/METHODS: Participants aged over 65 years from the 7th (2016-2018) Korea National Health and Nutrition Examination Survey were included. The diagnostic criteria of DM were set as output variables, while various nutritional intakes were set as input variables. An ANN model comprising one input layer with 16 nodes, one hidden layer with 12 nodes, and one output layer with one node was implemented in the MATLAB® programming language. A sensitivity analysis was conducted to determine the relative importance of the input variables in predicting the output. RESULTS: Our DM-predicting neural network model exhibited relatively high accuracy (81.3%) with 11 nutrient inputs, namely, thiamin, carbohydrates, potassium, energy, cholesterol, sugar, vitamin A, riboflavin, protein, vitamin C, and fat. CONCLUSIONS: In this study, the neural network sensitivity analysis method based on nutrient intake demonstrated a relatively accurate classification and prediction of DM in the older population.

Artificial Neural Network System in Evaluating Cervical Lymph Node Metastasis of Squamous Cell Carcinoma (편평세포암종 임파절 전이에 대한 인공 신경망 시스템의 진단능 평가)

  • Park Sang-Wook;Heo Min-Suk;Lee Sam-Sun;Choi Soon-Chul;Park Tae-Won;You Dong-Soo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.1
    • /
    • pp.149-159
    • /
    • 1999
  • Purpose: The purpose of this study was to evaluate cervical lymph node metastasis of oral squamous cell carcinoma patients by MRI film and neural network system. Materials and Methods: The oral squamous cell carcinoma patients(21 patients. 59 lymph nodes) who have visited SNU hospital and been taken by MRI. were included in this study. Neck dissection operations were done and all of the cervical lymph nodes were confirmed with biopsy. In MR images. each lymph node were evaluated by using 6 MR imaging criteria(size. roundness. heterogeneity. rim enhancement. central necrosis, grouping) respectively. Positive predictive value. negative predictive value. and accuracy of each MR imaging criteria were calculated. At neural network system. the layers of neural network system consisted of 10 input layer units. 10 hidden layer units and 1 output layer unit. 6 MR imaging criteria previously described and 4 MR imaging criteria (site I-node level II and submandibular area. site II-other node level. shape I-oval. shape II-bean) were included for input layer units. The training files were made of 39 lymph nodes(24 metastatic lymph nodes. 10 non-metastatic lymph nodes) and the testing files were made of other 20 lymph nodes(10 metastatic lymph nodes. 10 non-metastatic lymph nodes). The neural network system was trained with training files and the output level (metastatic index) of testing files were acquired. Diagnosis was decided according to 4 different standard metastatic index-68. 78. 88. 98 respectively and positive predictive values. negative predictive values and accuracy of each standard metastatic index were calculated. Results: In the diagnosis of using single MR imaging criteria. the rim enhancement criteria had highest positive predictive value (0.95) and the size criteria had highest negative predictive value (0.77). In the diagnosis of using single MR imaging criteria. the highest accurate criteria was heterogeneity (accuracy: 0.81) and the lowest one was central necrosis (accuracy: 0.59). In the diagnosis of using neural network systems. the highest accurate standard metastatic index was 78. and that time. the accuracy was 0.90. Neural network system was more accurate than any other single MR imaging criteria in evaluating cervical lymph node metastasis. Conclusion: Neural network system has been shown to be more useful than any other single MR imaging criteria. In future. Neural network system will be powerful aiding tool in evaluating cervical node metastasis.

  • PDF

Self-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture

  • Park, Ho-Sung;Park, Byoung-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.423-434
    • /
    • 2004
  • In this paper, we introduce a new topology of Self-Organizing Polynomial Neural Networks (SOPNN) based on genetically optimized Multi-Layer Perceptron (MLP) and discuss its comprehensive design methodology involving mechanisms of genetic optimization. Let us recall that the design of the 'conventional' SOPNN uses the extended Group Method of Data Handling (GMDH) technique to exploit polynomials as well as to consider a fixed number of input nodes at polynomial neurons (or nodes) located in each layer. However, this design process does not guarantee that the conventional SOPNN generated through learning results in optimal network architecture. The design procedure applied in the construction of each layer of the SOPNN deals with its structural optimization involving the selection of preferred nodes (or PNs) with specific local characteristics (such as the number of input variables, the order of the polynomials, and input variables) and addresses specific aspects of parametric optimization. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between the approximation and generalization (predictive) abilities of the model. To evaluate the performance of the GA-based SOPNN, the model is experimented using pH neutralization process data as well as sewage treatment process data. A comparative analysis indicates that the proposed SOPNN is the model having higher accuracy as well as more superb predictive capability than other intelligent models presented previously.reviously.

Cluster Based Fuzzy Model Tree Using Node Information (상호 노드 정보를 이용한 클러스터 기반 퍼지 모델트리)

  • Park, Jin-Il;Lee, Dae-Jong;Kim, Yong-Sam;Cho, Young-Im;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.41-47
    • /
    • 2008
  • Cluster based fuzzy model tree has certain drawbacks to decrease performance of testinB data when over-fitting of training data exists. To reduce the sensitivity of performance due to over-fitting problem, we proposed a modified cluster based fuzzy model tree with node information. To construct model tree, cluster centers are calculated by fuzzy clustering method using all input and output attributes in advance. And then, linear models are constructed at internal nodes with fuzzy membership values between centers and input attributes. In the prediction step, membership values are calculated by using fuzzy distance between input attributes and all centers that passing the nodes from root to leaf nodes. Finally, data prediction is performed by the weighted average method with the linear models and fuzzy membership values. To show the effectiveness of the proposed method, we have applied our method to various dataset. Under various experiments, our proposed method shows better performance than conventional cluster based fuzzy model tree.

Theory Refinements in Knowledge-based Artificial Neural Networks by Adding Hidden Nodes (지식기반신경망에서 은닉노드삽입을 이용한 영역이론정련화)

  • Sim, Dong-Hui
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.7
    • /
    • pp.1773-1780
    • /
    • 1996
  • KBANN (knowledge-based artificial neural network) combining the symbolic approach and the numerical approach has been shown to be more effective than other machine learning models. However KBANN doesn't have the theory refinement ability because the topology of network can't be altered dynamically. Although TopGen was proposed to extend the ability of KABNN in this respect, it also had some defects due to the link-ing of hidden nodes to input nodes and the use of beam search. The algorithm which could solve this TopGen's defects, by adding the hidden nodes linked to next layer nodes and using hill-climbing search with backtracking, is designed.

  • PDF

A Polynomial Time Approximation Scheme for Enormous Euclidean Minimum Spanning Tree Problem (대형 유클리드 최소신장트리 문제해결을 위한 다항시간 근사 법)

  • Kim, In-Bum
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.5
    • /
    • pp.64-73
    • /
    • 2011
  • The problem of Euclidean minimum spanning tree (EMST) is to connect given nodes in a plane with minimum cost. There are many algorithms for the polynomial time problem as EMST. However, for numerous nodes, the algorithms consume an enormous amount of time to find an optimal solution. In this paper, an approximation scheme using a polynomial time approximation scheme (PTAS) algorithm with dividing and parallel processing for the problem is suggested. This scheme enables to construct a large, approximate EMST within a short duration. Although initially devised for the non-polynomial problem, we employ naive PTAS to construct a vast EMST with dynamic programming. In an experiment, the approximate EMST constructed by the proposed scheme with 15,000 input terminal nodes and 16 partition cells shows 89% and 99% saving in execution time for the serial processing and parallel processing methods, respectively. Therefore, our scheme can be applied to obtain an approximate EMST quickly for numerous input terminal nodes.

Global Convergence of Neural Networks for Optimization (최적화문제를 위한 신경회로망의 Global Convergence)

  • 강민제
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.325-330
    • /
    • 2001
  • It has been realized that the results of circuit level simulation of neural networks, used for optimization problems, arc much different from those of algorism level simulation. In other words, the outputs converges asymptotically as time elapes, however, the input convergence depends on the value of parasitic conductance connected between input node and ground. Also, this conductance affects system performance. This paper discusses the influence of input conductance on the convergece of the continuous Hopfield neural networks. The convergence has been analyzed for the input and output nodes of neurons. Also, the characteristics of equilibrium points has been analyzed depending on different values of the input conductance.

  • PDF

Circumstance Adaptability of Competitive Learning Neural Networks (경쟁학습 신경망의 환경 적응성)

  • Choi, Doo-Il;Park, Yang-Su
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.591-593
    • /
    • 1997
  • When input circumstance is changed abrubtly, many nodes of Competitive Learning Neural Networks far from new input vector may never win, and therefore never learn. Various techniques to prevent these phenomena have been reported. We proposed a new technique based on Self Creating and Organizing Neural Networks, and which is compared to Self Organizing Feature Map and Frequency Sensitive Neural Networks.

  • PDF

Input Noise Immunity of Multilayer Perceptrons

  • Lee, Young-Jik;Oh, Sang-Hoon
    • ETRI Journal
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 1994
  • In this paper, the robustness of the artificial neural networks to noise is demonstrated with a multilayer perceptron, and the reason of robustness is due to the statistical orthogonality among hidden nodes and its hierarchical information extraction capability. Also, the misclassification probability of a well-trained multilayer perceptron is derived without any linear approximations when the inputs are contaminated with random noises. The misclassification probability for a noisy pattern is shown to be a function of the input pattern, noise variances, the weight matrices, and the nonlinear transformations. The result is verified with a handwritten digit recognition problem, which shows better result than that using linear approximations.

  • PDF

Multiple-Packet Reception MAC Protocol Applying Pulse/Tone Exchange in MIMO Ad-Hoc Networks

  • Yoshida, Yuto;Komuro, Nobuyoshi;Ma, Jing;Sekiya, Hiroo
    • Journal of Multimedia Information System
    • /
    • v.3 no.4
    • /
    • pp.141-148
    • /
    • 2016
  • This paper proposes a medium access control (MAC) protocol for multiple-input multiple-output (MIMO) ad-hoc networks. Multiple-packet receptions in MIMO systems have attracted as a key technique to achieve a high transmission rate. In the conventional protocols for multiple-packet receptions, timing offsets among multiple-frame transmissions cause frame collisions induced by hidden nodes, which degrades network performance. In the proposed protocol, transmission synchronization among hidden nodes can be achieved by applying pulse/tone exchanges. By applying the pulse/tone exchanges, multiple-packet receptions among hidden nodes can be achieved, which enhances network throughputs compared with the conventional protocol. Simulation results show effectiveness of the proposed protocol.