( A Polynomial Time Approximation Scheme for Enormous Euclidean
Minimum Spanning Tree Problem )
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Abstract

The problem of Euclidean minimum spanning tree (EMST) is to connect given nodes in a plane with minimum cost.
There are many algorithms for the polynomial time problem as EMST. However, for numerous nodes, the algorithms
consume an enormous amount of time to find an optimal solution. In this paper, an approximation scheme using a
polynomial time approximation scheme (PTAS) algorithm with dividing and parallel processing for the problem is
suggested. This scheme enables to construct a large, approximate EMST within a short duration. Although initially
devised for the non—polynomial problem, we employ naive PTAS to construct a vast EMST with dynamic programming.
In an experiment, the approximate EMST constructed by the proposed scheme with 15,000 input terminal nodes and 16
partition cells shows 89% and 99% saving in execution time for the serial processing and parallel processing methods,
respectively. Therefore, our scheme can be applied to obtain an approximate EMST quickly for numerous input terminal
nodes.

Keywords : Euclidean Minimum Spanning Tree; Polynomial Time Approximation Scheme; Portal

I. Introduction Tree(EMST) is also a minimum length tree that

connects all terminal nodes without given edges.

Minimum Spanning Tree(MST) is a minimum These trees can be used for network topology,
length tree connecting all terminal nodes with some routing, circuit design, and road construction.

given edges. Euclidean Minimum  Spanning Most published algorithms for them may encounter

some difficulties in real-world special cases, for

© A5 9 7 Eo ek [TeH example, in dealing with many terminal nodes.

(School of Information Technology, Kimpo College) Another example of obstacles may be in an area
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comprising some subareas that work independent of
each other. Sometimes a node of one subarea seeks
to communicate with nodes of other subareas. If the
entire mechanism for locating and connecting terminal
information is hidden or is unknown, management
and communication within the system may encounter
difficulties.  For

terminal nodes processed independently, excessive

serious numerous decentralized
execution time can be addressed via optimization of
the MST. For partially independent subareas,

decentralized system can provide efficient solutions

a

for the management of network security or hierarchy
information gradation.

In this paper, our proposed scheme employs a
Polynomial Time Approximation Scheme (PTAS) that
devised to solve the Euclidean Travelling
Problem (TSP), which is a NP problem

scheme constructs a tree that connects

has been
Salesman
03 The
numerous terminal nodes that are located nearly
evenly on a plane with minimum cost. By modifying
PTASs devised for NP problems, our scheme can
short

execution time. To justify our scheme, a huge EMST

construct an approximately EMST in a
problem is selected and applied as a test case.

A particular merit of our scheme is its design
facilitation through which the customer’s individual
demands can be satisfied. Specifically, the target tree
can be designed to focus on reduction of execution

time or on a particular approach to optimize a MST.
II. Background and Related Works

To connect N vertices, N-1 edges are required for
a MST. The algorithm of Kruskal or Prim has been
employed to generate a MST " The running time of
Prim’s algorithm is O(EF+ Nx<logN) when a priority
queue is implemented as a Fibonacci heap. If the
graph is sparse, the running time is O(NXloghN) “
S. Pettie et al. proposed an algorithm that constructs
a MST in O[T'(EN)] for N vertices and £ edges,
where 7" is the edge weight comparing number Bl

This algorithm can be implemented easily on a
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pointer machine. The major difference between a
EMST and a general MST is that the former does
not have edges as input. That is, it connects all input
vertices at a minimum cost. A simple methodology
for this tree is to make complete connections for the
given vertices and then to employ an efficient
algorithm of general MST. The product of this
method is an EMST.

Given N vertices for set P, an EMST can be
presented as a set of triangles connecting those
vertices, this approach is designated Triangular. If
none of the vertices of set P is located inside a
circumcircle of a triangle of the set, it is specifically
designated Delaunay  Triangular. A Delaunay
Triangular layout can be represented by a plane
graph for vertex set P. The MST for P can be
proved to be a subgraph of a Delaunay Triangular
graph®. A MST
O(E+ NxlogN) = O(kx N+ NxlogN)= O(Nx logN)

can be constructed in
when the number of edges of a Delaunay Triangular
graph is made proportional to the number of vertices
and applied to a general MST.

In a wireless sensor network, a MST can be used
in the design of network topology and routing
protocols. When designing a wireless sensor network
system, energy efficiency of sensor nodes is a very
important factor. To improve the energy efficiency of
sensor nodes, J. Li et al suggested a method for
constructing network topology based on a MST ) J.
Kim et al published a study providing a scheme for
constructing EMST by parallel processing over
distributed the

determining the maximum difference of the layout or

environments, and ground for
the graph produced from the scheme'™.

PTAS is a form of approximation algorithm for
finding a solution with an allowable error ¢>0 of
the optimal solution. For example, for the Euclidean
Traveling Salesman Problem (ETSP), PTAS can find
a travel distance with e>0 of additional moving
distance from the shortest optimal travel. Arora
showed that the ETSP can be solved in N9 time

by using PTAS for a 1+e¢ approximation of the TSP
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optimal solution for N given nodes on plane[lﬂ]. J.

Kim et al provided a 1+¢ approximation of the
Grade of Services Steiner Minimum Tree (GOSST),
which can be obtained in polynomial time using
PTAS"!

II. Proposed Scheme

Our proposed scheme for an enormous EMST
partially uses definitions and concepts reported in the

125 The given problem area is divided by

literature
some rectangular forms. Sides of each rectangle are
parallel or vertical against the axis of coordinates.
Size of a rectangle is defined as length of its long
side. A target optimal tree is an optimal connecting
structure, and a nonguaranteed optimal tree is defined
as a connecting structure. Cost of a connecting
structure is the sum of the edge lengths of the
structure. The line separator of a rectangle £ is a
line dividing & into two subrectangles. The dividing
ratio of the line separator for / is variable. With the
division for rectangles, the scheme proposed in this
paper executes the designed dynamic program.
Divisions terminate when the size of the subrectangle
reaches a determined value. Portals for parent
rectangle are nodes located on the sides of the
offspring rectangles. Portals are located between two

ends of the rectangle sides. Length between two

Line Separator
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Fig. 1. Linking two connecting structures of two areas

via a portal of line separator.
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adjacent two portals is the same in same layer, and
number of portals yielded in every dividing layer is
equal. Merging of two areas (rectangles) may occur
on some portals to link two connecting structures of
the areas.

Fig. 1 shows the linking of a connecting structure
of Area 1 to a connecting structure of Area 2 only
on a portal of line separator when two problem areas
are merged. For a structure that is closer to optimal,
portals examined in the bottom layer should all be
combinations of portals on all line separators. Among
the combinations of each layer, some portals with the
least costly final connecting structure that is built in
the top layer are selected in each layer. Fig. 2
that
partition—designed for applying PTAS to an enormous
EMST. There are 16 partition cells in the bottom

layer and 8 subareas in Layer 2 that are formed

represents a problem area hierarchy is

through merging two adjacent areas of the bottom
layer. By the same method, a connecting structure in
each area of the upper layer is built by merging two
constructed structures in two adjacent areas of the
under layer. In the top layer, all information on
connecting structures built by every combination of
all line separators and all portals in the lower layers
can be acquired. Using that information, a minimum
structure is selected for
Fig. 3,

separator is shown. A candidate line separator is a

cost connecting an

approximate MST. In selecting a line

line parallel to the height of the rectangle problem
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Fig. 2. Hierarchy for connecting structure.



2011 9F MAESs ==X H 48 2 CIEH H 5 =

L/3

ij

L3

__ Candidate Line Separator;

—

L/3

{_A_\

Candidate Line Separator;

ITRRRRARTS
| LT
BETT Iy _—

= Candidate Line Separator, ;

o Candidate Line Separator,

=5 2fel 22Xt
Fig Candidate line separators.

zst AEZ AZ F=xo 2fel 2alAte =™

& MM Jtss dd 7=
Candidate merged connecting structure built with
bottom layer connecting structures through some
portals on line separators.

Line Separator

Areal Aved 1

* Portal

#

*
|
i
%

@ Temminal
Node

—— Connecticn

ag
Fig.

5 Eg| Zo|e ttEg 9t =Ae &Y

5. Post processing for tree length curtailment.

area. Candidate line separators may locate on one of
1/3 ~2/3 rectangle width L. Portals are on the

candidate line separators. Among the candidates of
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Step 1: For each candidate line separator, generate portals,
respectively.

Step 2: For each partition cell of bottom layer, all connecting
structures are built by brute-force method, respectively,
with all combinations of portals generated in Step 1 and
candidate line separators.

Step 3: For every combination of candidate line separators and
portals, adjacent connecting structures of under layer are
merged to form all connecting structures in next upper
layer. Information for each connecting structure is saved
in table entry.

Step 4: For next upper layer, repeat Step 3 for until all

candidate connecting structures until top layer is built.

Step 5 In top layer, select minimum-cost connecting structure
from all candidates using stored table entry information;
then investigate and collect all lower-layer connecting
structures composed of selected connecting structure

using table information.

Step 6. Perform post-process on final selected connecting
structure to build final PTAS approximate Euclidean
minimum sSpanning tree.

d7 6. PTASE 0|88 g ZAL z4 EE|9 MY

gna|E

Fig. 6. algorithm for  constructing an  enormous

approximate Euclidean minimum spanning tree
using PTAS.
each layer, lines with which minimum cost

connecting structure can be built in the top layer
become final line separators.
Fig. 4

connecting structures of the bottom layer via portals.

represents an example of merging
Every merged connecting structure of each layer will
be considered as a candidate for the top layer. Fig. 5
presents a post process. Instead of linking the left-
and right-side connecting structures of the line
separator via a portal, if two nodes attached to the
portal directly link to each other, the total length of
the tree will be shorter than the tree before the post
process. Fig. 6 is an outline of our algorithm for
building an approximate enormous EMST using
PTAS. With the algorithm and four partition cells of
the bottom layer, connecting structures for a final
approximate EMST are shown in Fig. 7. Two
hundred input terminal nodes appear in Fig. 7(a). Fig.
7(b) shows an optimal EMST yielded by modified

Prim’s algorithm for input terminal nodes “l Fig. 7(c)
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Fig. 7. Selections and post processes of connecting

structures in proposed scheme.

illustrates a final determined connecting structure.
Fig. 7(d) demonstrates the final approximate EMST,
which is a result of the post process that cuts the
connections to selected portals and makes new
connections between the terminal nodes that were

previously linked to the portals.

IV. Experiment and Analysis

Experimental parameters for the proposed scheme
are terminal node number and partition cell number
of bottom layer. Results of the analysis are tree
of

execution time for tree construction. Approximate rate

length  approximation constructed tree and
of length is determined by comparing the length of
the tree constructed by our proposed scheme with the
of an optimal MST constructed by the

modified Prim's algorithm. In our experiments, a

length

candidate line separator located on 1/2rectangle wide
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Fig. 8 PTAS approximate minimum spanning trees

constructed with different numbers of partition
cell (terminal node = 3000, maximum portal
number per line separator = 2).

L is determined as the final line separator. The
maximum number of portals on a line separator is
two, and one of them is selected as a candidate
portal for a connecting structure in each layer.
Although it introduces some error in tree length, this
simplification makes the proposed scheme easy to
implement.

Numbers of randomly generated terminal nodes are
3000, 6000, 9000, 12000, and 15000. Each node has no
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duplicate coordination in the plane and is located a
little bit apart from the line separators of each layer.
Numbers of partition cells of the bottom layer are 2,
4 8 and 16, and distribution of terminal nodes is
nearly even. If partition cells are greater in number,
terminal nodes that belong to each cell will be fewer,
and handling them will be easier. If the number of
partition cells of the bottom layer is smaller, the tree
produced by our scheme will share more similar
characteristics with an optimal MST, which can
handle all terminal nodes.

In our experiments, we construct an optimal MST
by modified Prim’s algorithm for comparison with the
trees constructed by our proposed scheme. Our
scheme was implemented by C++ and executed on a
laptop with an Intel 1.83 GHz processor and 2 Giga
byte of RAM.

Fig. 8(a) and Fig. 8®b) show 3000 randomly
generated terminal nodes and an optimal EMST. For
3000 terminal nodes, Fig.s 8(c) to 8(f)

approximate EMST's constructed by our scheme with

show

different numbers of partition cells in the bottom
layer. For numbers 2, 4, 8, and 16, the resulting trees
(d, (e), (f),
respectively. Dashed circles represent selected portals

can be seen in Figs 8(c), and

and their connections in the pictures.

1. Lengths and Overheads of the Trees

In Fig. 9(a) and Fig. 9(b), we compare results of
each PTAS approximate minimum tree constructed
with given parameters. While the number of terminal
nodes increases, the length of the tree increases, but
While the number of

partition cells of the bottom layer decreases, the

the error ratio decreases.

approximation degree increases. When the terminal
node number is 15000, if the partition cell number is
sixteen, the error is 0.25%; and if the partition cell
number is two, the error is 0.06%. It is natural that a
small number of partition cells results in small error
because smaller numbers of partition cell make one
area a larger size, and the scheme can consider more

terminal nodes to build connecting structures of each

69

Length of Trees
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Lengths of PTAS approximate  minimum
spanning trees  constructed  with  different
numbers of terminal node and partition cells.
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area. If the scheme can handle fewer terminal nodes
in a larger number of partition cells, aggregated error

of the constructed tree may be larger.

2. Effects of Post—Process
to final

connecting structures built by our proposed scheme,

If triangle distance theorem applies

the new tree can be close to the optimal tree. When
two nodes are indirectly connected via a portal in a

final connecting structure in the top layer, if two
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nodes connect directly to each other, the length of
the new tree can be curtailed. When terminal nodes
are distributed nearly evenly, if the number of
terminal nodes is smaller, the effect of post process
may be greater. Further, although the number of
terminal nodes is larger, if the whole problem area is
larger, the effect of post process may be also greater.
Fig. 10 shows that if the number of terminal nodes is
the effect

pronounced. When the partition cell number is four, if

smaller, of post process 1S more

the number of terminal nodes is 3000, the saving
length is 0.34 and the saving ratio is 0.08%; if the
number of terminal nodes is 15000, the saving length
is 0.18 and the saving ratio is 0.0226.

Saving Length of Trees

Ecell=2 Mcell=4 Hcell=& ®cell=18

3000

6000 9000 12000 15000

terminal nodes

(@ FH2| 2t 3o HUE E2| 2o

(a) Curtailment of tree lengths after post process

Length Saving Ratios of Trees
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(b) Length curtailment ratio after post process
a3 10, = a2l Z3f
Fig. 10. Results of post process.
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3. Times for Tree Construction through the
Serial Method

Fig. 11 shows execution times of PTAS

approximate MST constructed by the serial method
with given experimental parameters. In the serial
method, among areas in a layer only one is processed
at a time according to a predefined order and then
the next one is processed. Fig. 11 shows that the
more partition cells present in the bottom layer, the
greater is the saving ratio of execution time. When
the terminal node number is 15000, the time saving
ratio of the tree constructed with sixteen partition

cells 1s 89.2%, and the ratio of the tree constructed

Building Time in Serial Method
@ Optimal  Mcell=2 ®cell=4 ®cell=8 HEcel=16
time
1600000
1400000
1200000
1000000
200000
600000 E—
400000 -
200000 - L
o
3000 6000 2000 12000 15000
terminal nodes

(a) ZlFEeeoll ol EB| MM Azt
(a) Tree building time in serial method

Time Saving Ratios in Serial Method
—+—cell=2 “—cell=4 —a—cell=8 ——cell=16
ratio
100.0%
80.0% e ——
— —
—
20.0%
20.0% /
0.0% —tr
_30.0% 3000 6000 9000 12000 15000
terminal nodes

(o) AZEatHol AlZH Mzt H[E
(b) Time curtailment ratio by serial method

11.
11.

A PTAS ZAF 2[4 MEEZ] M4 A7
Construction time of PTAS approximate minimum
spanning tree by the serial method.

Fig.
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with two partition cells is 20.1%. If the number of
terminal nodes is more for the same number of
partition cells, then the time saving ratios are even
somewhat higher. When the partition cell number is
sixteen, the PTAS approximate MST constructed by
the serial method with 3000 terminal nodes shows a
73.7% time saving ratio compared to the optimal tree,
and the PTAS tree with 15000 terminal nodes
achieves a savings ratio of 89.2%.

Thus,

experiments that our scheme, which does not require

we have demonstrated via laboratory
an optimal MST, deals successfully with a very large
number of terminal nodes and also does not take too
much time for building the application, so it can be a

good practical choice.

4. Times for Tree Construction through the
Parallel Method

Fig. 12 shows execution times for constructing
PTAS approximate MSTs by the parallel method
with given experimental parameters. In the parallel
method, each partition cell of the bottom layer may
have its own processor working independently on its
connecting structures. Because execution time for the
bottom layer is the longest of all execution times for
constructing a tree, connecting structures of other
layers except for the bottom layer can be built by
similar application of the serial method. Through
experimental analysis, we have verified that most of
the execution time is spent in making connecting
structures for the bottom layer. Therefore, if each
step for the bottom layer is processed in parallel,
much time can be saved. However, if there are many
merging steps to construct the target tree, more time
savings can be expected by using some well-placed
processors. Fig. 12 shows that when the number of
partition cells is the same, if the number of terminal
nodes increases, savings ratios of execution time for
constructing trees either increase somewhat or show
no change, as with the serial method. When the
number of terminal nodes is the same, if the partition

cells of bottom line are greater, the execution time is

4l

Building Time in Parallel Method
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12, HZE PTAS AL 2|2 MEER] MM AlZH
12. Construction time of PTAS  approximate
minimum spanning tree by the parallel method.

much shorter. Saving ratios for the parallel method
are far greater than those for the serial method with
regard to tree construction time.

Construction time using the parallel method for the
PTAS approximate MST with 15000 terminal nodes
and sixteen partition cells is 99% shorter than that
for the optimal MST. This construction time is also
92.4% shorter than that for the PTAS tree using the
serial method. Execution time using the parallel
method for the PTAS tree with 15000 terminal nodes
and two partition cells is 58% shorter than execution
time for the optimal tree and 47.7% shorter than

execution time using the serial method.
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Therefore in an environment where use of the
parallel method is possible, if each partition cell in
the bottom layer is designed to be handled by its
own processor, construction time for goal tree by our
proposed parallel method can be much less than that
using the MST algorithm and also less than that
using the serial method described in section 4.3

above.

5. Running Time

Running time for constructing a MST by Prim’s
algorithm is O(Nx1loghN). In the naive algorithm for
the EMST, it is O(N?*+ Ox logN) = O(N?),
O(N?)

connections. Running time for the approximate EMST

because

time is needed for creating complete
proposed in this paper using PTAS is composed of
time for building connecting structures of each
partition cell in the bottom layer, time for making
table entries for connecting structures in each layer,
and time for table retrievals. Time for building
connecting structures of each partition cell of the
bottom layer is as follows:

In serial method:

k,

3 ixm o<t < n? o
i=1

In parallel method:

max, _; - (I Xmxt, xXn?) )

In Expressions (1) and (2), / is the number of
candidate line separators and 4 is the number of
partition cells in the bottom layer. The symbol
represents the number of terminal nodes that belong
to partition cell 7 and if the distribution of terminal
nodes is nearly even, every n is about N/k=n And 4
is the time per each terminal node for building a
connecting structure for the MST. The symbol m is

the number of combinations of selected portals on
each candidate line separator, which is »,,C;, where
i=1

r is the maximum number of portals per each line

separator. In this paper, for simple implementation, a

(526)
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PTAS 1is designed by F1 and nr2. So Expressions
(1) and (2) can be depicted as follows:
In the serial method:
k
b (3)
i=1

k
IxXmxt, xn?=CxY,n’= 0(n?)
i=1

In the parallel method:

max, _; ., (Ixmxt, xn?)= Cxmax, _, . . (n?)=0(n?)

4)

Each entry in all tables stores information for each
connecting structure of a layer, and £ is the number
of the entries for all tables. When the number of
portals on each line separator is two and only one of

them is selected, £ can be expressed as follows:

d
E= 222"+d—(p+1>
p=1

)

In expression (5), d is the number of layers for
PTAS. The symbol d which is independent of the
number of terminal nodes, can be determined by the
PTAS designer. So the running time of the proposed
and designed PTAS for the large scale approximate

EMST can be expressed as follows:

O(n?) +t, <X B+t, x E= O(n*) < O(N?) (6)

In expression (6), # is the time for creating each
entry in the tables, and # is the time for retrieving
table entries. Compared with the time for building
connecting structures in partition cells of the bottom
layer, the time for creating or retrieving table entries
is very tiny; therefore, it can be disregarded. Thus,
the running time of our proposed well-designed
PTAS can be shorter than that for the naive optimal
EMST when the distribution of terminal nodes is

nearly even.

V. Conclusions

It should be noted that our proposed scheme is
encumbered with many restrictions. Processing steps

of the scheme are simplified by some methods such
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as the cut-branch technique. These restrictions may
affect the approximation rate of the trees that we
if original PTASs

restrictions are applied to a problem, huge execution

construct. However, without
times and memories will be required, which will
throw into doubt the practical usage of our scheme.

We have also attempted to use our proposed
scheme to solve other problems that have been
solved by well-known algorithms but which

special case of real world, can issue some practical

in

difficulties. Through our scheme, running time and
memory space are expected to be saved for the
problems. Another work is to study the proposed
PTAS under diverse environments. Applying our
scheme to non-even distributed terminal nodes is an
example. In this paper, we assumed nearly even
distributed terminal nodes. In real world application, a
solution of PTAS for non-even distributed terminals

may be necessary.
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