
64 대형 유클리드 최소신장트리 문제해결을 위한 다항시간 근사 법 김인범

논문 2011-48CI-5-9

대형 유클리드 최소신장트리 문제해결을 위한

다항시간 근사 법

(A Polynomial Time Approximation Scheme for Enormous Euclidean

Minimum Spanning Tree Problem)

김 인 범**

(Inbum Kim)

요 약

유클리드 최소 신장 트리(EMST) 문제는 2차원 평면상에 존재하는 입력노드들을 최소 비용으로 연결하는 것이다. EMST

와 같은 다항 시간문제에 대하여 연구된 알고리즘들은 수많은 입력들에 대하여 최적의 해를 얻기 위해 매우 많은 시간을 필요

로 한다. 본 논문에서는 이 문제에 대한 해를 구하기 위해 분할과 병렬기법을 활용한 다항 시간 근사법(PTAS)을 제안하는데,

이 기법은 비교적 짧은 시간 내에 매우 큰 근사 EMST를 생성할 수 있다. 순수 PTAS는 비-다항 시간문제를 위해 개발되었

지만, 다이내믹 프로그래밍을 활용하여 이것을 대형 EMST에 적용하였다. 제안된 방법에 의해 생성된 15,000개의 입력 단말

노드와 16개의 분할 영역으로 구성된 근사 EMST의 생성 실험에서, 직렬 방식은 89%, 병렬 방식은 99%의 실행시간의 감축을

보였다. 따라서 본 논문에서 제안하는 방법은 평면상의 매우 많은 수의 입력 단말 노드에 대하여 근사 EMST를 신속히 구축

해야 하는 응용에 잘 적용될 수 있다.

Abstract

The problem of Euclidean minimum spanning tree (EMST) is to connect given nodes in a plane with minimum cost.

There are many algorithms for the polynomial time problem as EMST. However, for numerous nodes, the algorithms

consume an enormous amount of time to find an optimal solution. In this paper, an approximation scheme using a

polynomial time approximation scheme (PTAS) algorithm with dividing and parallel processing for the problem is

suggested. This scheme enables to construct a large, approximate EMST within a short duration. Although initially

devised for the non-polynomial problem, we employ naïve PTAS to construct a vast EMST with dynamic programming.

In an experiment, the approximate EMST constructed by the proposed scheme with 15,000 input terminal nodes and 16

partition cells shows 89% and 99% saving in execution time for the serial processing and parallel processing methods,

respectively. Therefore, our scheme can be applied to obtain an approximate EMST quickly for numerous input terminal

nodes.

Keywords : Euclidean Minimum Spanning Tree; Polynomial Time Approximation Scheme; Portal

Ⅰ. Introduction

Minimum Spanning Tree(MST) is a minimum

length tree connecting all terminal nodes with some

given edges. Euclidean Minimum Spanning

*
정회원, 김포대학 IT학부

(School of Information Technology, Kimpo College)

접수일자: 2011년4월26일, 수정완료일: 2011년8월29일

Tree(EMST) is also a minimum length tree that

connects all terminal nodes without given edges.

These trees can be used for network topology,

routing, circuit design, and road construction.

Most published algorithms for them may encounter

some difficulties in real-world special cases, for

example, in dealing with many terminal nodes.

Another example of obstacles may be in an area

(518)

2011년 9월 전자공학회 논문지 제 48 권 CI 편 제 5 호 65

comprising some subareas that work independent of

each other. Sometimes a node of one subarea seeks

to communicate with nodes of other subareas. If the

entire mechanism for locating and connecting terminal

information is hidden or is unknown, management

and communication within the system may encounter

serious difficulties. For numerous decentralized

terminal nodes processed independently, excessive

execution time can be addressed via optimization of

the MST. For partially independent subareas, a

decentralized system can provide efficient solutions

for the management of network security or hierarchy

information gradation.

In this paper, our proposed scheme employs a

Polynomial Time Approximation Scheme (PTAS) that

has been devised to solve the Euclidean Travelling

Salesman Problem (TSP), which is a NP problem
[1-3]

. The scheme constructs a tree that connects

numerous terminal nodes that are located nearly

evenly on a plane with minimum cost. By modifying

PTASs devised for NP problems, our scheme can

construct an approximately EMST in a short

execution time. To justify our scheme, a huge EMST

problem is selected and applied as a test case.

A particular merit of our scheme is its design

facilitation through which the customer’s individual

demands can be satisfied. Specifically, the target tree

can be designed to focus on reduction of execution

time or on a particular approach to optimize a MST.

Ⅱ. Background and Related Works

To connect N vertices, N-1 edges are required for

a MST. The algorithm of Kruskal or Prim has been

employed to generate a MST [4]. The running time of

Prim’s algorithm is × log when a priority

queue is implemented as a Fibonacci heap. If the

graph is sparse, the running time is × log [4].

S. Pettie et al. proposed an algorithm that constructs

a MST in   for N vertices and E edges,

where   is the edge weight comparing number
[5]

.

This algorithm can be implemented easily on a

pointer machine. The major difference between a

EMST and a general MST is that the former does

not have edges as input. That is, it connects all input

vertices at a minimum cost. A simple methodology

for this tree is to make complete connections for the

given vertices and then to employ an efficient

algorithm of general MST. The product of this

method is an EMST.

Given N vertices for set P, an EMST can be

presented as a set of triangles connecting those

vertices; this approach is designated Triangular. If

none of the vertices of set P is located inside a

circumcircle of a triangle of the set, it is specifically

designated Delaunay Triangular. A Delaunay

Triangular layout can be represented by a plane

graph for vertex set P. The MST for P can be

proved to be a subgraph of a Delaunay Triangular

graph
[6]

. A MST can be constructed in

 × log = ×  × log=  × log

when the number of edges of a Delaunay Triangular

graph is made proportional to the number of vertices

and applied to a general MST.

In a wireless sensor network, a MST can be used

in the design of network topology and routing

protocols. When designing a wireless sensor network

system, energy efficiency of sensor nodes is a very

important factor. To improve the energy efficiency of

sensor nodes, J. Li et al. suggested a method for

constructing network topology based on a MST [7]. J.

Kim et al. published a study providing a scheme for

constructing EMST by parallel processing over

distributed environments, and the ground for

determining the maximum difference of the layout or

the graph produced from the scheme
[8]

.

PTAS is a form of approximation algorithm for

finding a solution with an allowable error    of

the optimal solution. For example, for the Euclidean

Traveling Salesman Problem (ETSP), PTAS can find

a travel distance with    of additional moving

distance from the shortest optimal travel. Arora

showed that the ETSP can be solved in  time

by using PTAS for a  approximation of the TSP

(519)

66 대형 유클리드 최소신장트리 문제해결을 위한 다항시간 근사 법 김인범

optimal solution for N given nodes on plane
[1～2]

. J.

Kim et al. provided a  approximation of the

Grade of Services Steiner Minimum Tree (GOSST),

which can be obtained in polynomial time using

PTAS[9].

Ⅲ. Proposed Scheme

Our proposed scheme for an enormous EMST

partially uses definitions and concepts reported in the

literature [1,2,15]. The given problem area is divided by

some rectangular forms. Sides of each rectangle are

parallel or vertical against the axis of coordinates.

Size of a rectangle is defined as length of its long

side. A target optimal tree is an optimal connecting

structure, and a nonguaranteed optimal tree is defined

as a connecting structure. Cost of a connecting

structure is the sum of the edge lengths of the

structure. The line separator of a rectangle R is a

line dividing R into two subrectangles. The dividing

ratio of the line separator for R is variable. With the

division for rectangles, the scheme proposed in this

paper executes the designed dynamic program.

Divisions terminate when the size of the subrectangle

reaches a determined value. Portals for parent

rectangle are nodes located on the sides of the

offspring rectangles. Portals are located between two

ends of the rectangle sides. Length between two

그림 1. 라인 분리선의 포탈을 통한 두 영역의 연결 구

조의 연결

Fig. 1. Linking two connecting structures of two areas

via a portal of line separator.

adjacent two portals is the same in same layer, and

number of portals yielded in every dividing layer is

equal. Merging of two areas (rectangles) may occur

on some portals to link two connecting structures of

the areas.

Fig. 1 shows the linking of a connecting structure

of Area 1 to a connecting structure of Area 2 only

on a portal of line separator when two problem areas

are merged. For a structure that is closer to optimal,

portals examined in the bottom layer should all be

combinations of portals on all line separators. Among

the combinations of each layer, some portals with the

least costly final connecting structure that is built in

the top layer are selected in each layer. Fig. 2

represents a problem area hierarchy that is

partition-designed for applying PTAS to an enormous

EMST. There are 16 partition cells in the bottom

layer and 8 subareas in Layer 2 that are formed

through merging two adjacent areas of the bottom

layer. By the same method, a connecting structure in

each area of the upper layer is built by merging two

constructed structures in two adjacent areas of the

under layer. In the top layer, all information on

connecting structures built by every combination of

all line separators and all portals in the lower layers

can be acquired. Using that information, a minimum

cost connecting structure is selected for an

approximate MST. In Fig. 3, selecting a line

separator is shown. A candidate line separator is a

line parallel to the height of the rectangle problem

그림 2. 연결구조의 계층화

Fig. 2. Hierarchy for connecting structure.

(520)

2011년 9월 전자공학회 논문지 제 48 권 CI 편 제 5 호 67

그림 3. 후보 라인 분리자

Fig. 3. Candidate line separators.

그림 4. 최하위 계층 연결 구조의 라인 분리자의 포털

을 이용한 병합을 통해 생성 가능한 연결 구조

Fig. 4. Candidate merged connecting structure built with

bottom layer connecting structures through some

portals on line separators.

그림 5. 트리 길이의 단축을 위한 후처리 작업

Fig. 5. Post processing for tree length curtailment.

area. Candidate line separators may locate on one of

∼ rectangle width L. Portals are on the

candidate line separators. Among the candidates of

Step 1: For each candidate line separator, generate portals,

respectively.

Step 2: For each partition cell of bottom layer, all connecting

structures are built by brute-force method, respectively,

with all combinations of portals generated in Step 1 and

candidate line separators.

Step 3: For every combination of candidate line separators and

portals, adjacent connecting structures of under layer are

merged to form all connecting structures in next upper

layer. Information for each connecting structure is saved

in table entry.

Step 4: For next upper layer, repeat Step 3 for until all

candidate connecting structures until top layer is built.

Step 5: In top layer, select minimum-cost connecting structure

from all candidates using stored table entry information;

then investigate and collect all lower-layer connecting

structures composed of selected connecting structure

using table information.

Step 6: Perform post-process on final selected connecting

structure to build final PTAS approximate Euclidean

minimum spanning tree.

그림 6. PTAS를 이용한 대형 근사 최소 트리의 생성

알고리즘

Fig. 6. algorithm for constructing an enormous

approximate Euclidean minimum spanning tree

using PTAS.

each layer, lines with which minimum cost

connecting structure can be built in the top layer

become final line separators.

Fig. 4 represents an example of merging

connecting structures of the bottom layer via portals.

Every merged connecting structure of each layer will

be considered as a candidate for the top layer. Fig. 5

presents a post process. Instead of linking the left-

and right-side connecting structures of the line

separator via a portal, if two nodes attached to the

portal directly link to each other, the total length of

the tree will be shorter than the tree before the post

process. Fig. 6 is an outline of our algorithm for

building an approximate enormous EMST using

PTAS. With the algorithm and four partition cells of

the bottom layer, connecting structures for a final

approximate EMST are shown in Fig. 7. Two

hundred input terminal nodes appear in Fig. 7(a). Fig.

7(b) shows an optimal EMST yielded by modified

Prim’s algorithm for input terminal nodes [4]. Fig. 7(c)

(521)

68 대형 유클리드 최소신장트리 문제해결을 위한 다항시간 근사 법 김인범

(a) 입력 단말노드

(a) Input terminal nodes

(b) 최적 유클리드 최소신장트리

(b) Optimal EMST

(c) 결정된 최상위 연결 구조

(c) Determined connecting

structure in top layer

(d) 후처리 PTAS 근사 최소트리

(d) Post processed PTAS

approximate MST

그림 7. 제안된 기법에서 연결구조의 선택 및 처리 과

정

Fig. 7. Selections and post processes of connecting

structures in proposed scheme.

illustrates a final determined connecting structure.

Fig. 7(d) demonstrates the final approximate EMST,

which is a result of the post process that cuts the

connections to selected portals and makes new

connections between the terminal nodes that were

previously linked to the portals.

Ⅳ. Experiment and Analysis

Experimental parameters for the proposed scheme

are terminal node number and partition cell number

of bottom layer. Results of the analysis are tree

length approximation of constructed tree and

execution time for tree construction. Approximate rate

of length is determined by comparing the length of

the tree constructed by our proposed scheme with the

length of an optimal MST constructed by the

modified Prim’s algorithm. In our experiments, a

candidate line separator located on rectangle wide

(a) 입력 단말노드

(a) Input terminal nodes

(b) 최적 유클리드 최소신장트리

(b) Optimal EMST

(c) 분할 영역 = 2

(c) Partition cell = 2

(d) 분할 영역 = 4

(d) Partition cell = 4

(e) 분할 영역 = 8

(e) Partition cell = 8

(f) 분할 영역 = 16

(f) Partition cell = 16

그림 8. 분할 영역 수의 변화에 따라 생성된 PTAS 근

사 최소 신장 트리(단말노드=3000, 라인 분리선

당 최대 포털 수=2)

Fig. 8. PTAS approximate minimum spanning trees

constructed with different numbers of partition

cell (terminal node = 3000, maximum portal

number per line separator = 2).

L is determined as the final line separator. The

maximum number of portals on a line separator is

two, and one of them is selected as a candidate

portal for a connecting structure in each layer.

Although it introduces some error in tree length, this

simplification makes the proposed scheme easy to

implement.

Numbers of randomly generated terminal nodes are

3000, 6000, 9000, 12000, and 15000. Each node has no

(522)

2011년 9월 전자공학회 논문지 제 48 권 CI 편 제 5 호 69

duplicate coordination in the plane and is located a

little bit apart from the line separators of each layer.

Numbers of partition cells of the bottom layer are 2,

4, 8, and 16, and distribution of terminal nodes is

nearly even. If partition cells are greater in number,

terminal nodes that belong to each cell will be fewer,

and handling them will be easier. If the number of

partition cells of the bottom layer is smaller, the tree

produced by our scheme will share more similar

characteristics with an optimal MST, which can

handle all terminal nodes.

In our experiments, we construct an optimal MST

by modified Prim’s algorithm for comparison with the

trees constructed by our proposed scheme. Our

scheme was implemented by C++ and executed on a

laptop with an Intel 1.83 GHz processor and 2 Giga

byte of RAM.

Fig. 8(a) and Fig. 8(b) show 3000 randomly

generated terminal nodes and an optimal EMST. For

3000 terminal nodes, Fig.s 8(c) to 8(f) show

approximate EMSTs constructed by our scheme with

different numbers of partition cells in the bottom

layer. For numbers 2, 4, 8, and 16, the resulting trees

can be seen in Fig.s 8(c), (d), (e), and (f),

respectively. Dashed circles represent selected portals

and their connections in the pictures.

1. Lengths and Overheads of the Trees

In Fig. 9(a) and Fig. 9(b), we compare results of

each PTAS approximate minimum tree constructed

with given parameters. While the number of terminal

nodes increases, the length of the tree increases, but

the error ratio decreases. While the number of

partition cells of the bottom layer decreases, the

approximation degree increases. When the terminal

node number is 15000, if the partition cell number is

sixteen, the error is 0.25%; and if the partition cell

number is two, the error is 0.06%. It is natural that a

small number of partition cells results in small error

because smaller numbers of partition cell make one

area a larger size, and the scheme can consider more

terminal nodes to build connecting structures of each

(a) 최적 트리와 PTAS 근사 트리간의 길이

(a) Lengths of optimal and PTAS approximate trees

(b) 최적트리와 PTAS 근사트리간의 길이오차 비율

(b) Error ratios between lengths of optimal and PTAS

approximate trees

그림 9. 단말노드의 수와 분할 영역의 변동에 따른

PTAS근사 최소 신장트리의 길이

Fig. 9. Lengths of PTAS approximate minimum

spanning trees constructed with different

numbers of terminal node and partition cells.

area. If the scheme can handle fewer terminal nodes

in a larger number of partition cells, aggregated error

of the constructed tree may be larger.

2. Effects of Post-Process

If triangle distance theorem applies to final

connecting structures built by our proposed scheme,

the new tree can be close to the optimal tree. When

two nodes are indirectly connected via a portal in a

final connecting structure in the top layer, if two

(523)

70 대형 유클리드 최소신장트리 문제해결을 위한 다항시간 근사 법 김인범

nodes connect directly to each other, the length of

the new tree can be curtailed. When terminal nodes

are distributed nearly evenly, if the number of

terminal nodes is smaller, the effect of post process

may be greater. Further, although the number of

terminal nodes is larger, if the whole problem area is

larger, the effect of post process may be also greater.

Fig. 10 shows that if the number of terminal nodes is

smaller, the effect of post process is more

pronounced. When the partition cell number is four, if

the number of terminal nodes is 3000, the saving

length is 0.34 and the saving ratio is 0.08%; if the

number of terminal nodes is 15000, the saving length

is 0.18 and the saving ratio is 0.02%.

(a) 후처리 작업 후의 절감된 트리 길이

(a) Curtailment of tree lengths after post process

(b) 후 처리 작업 후의 길이 절감 비율

(b) Length curtailment ratio after post process

그림 10. 후 처리 결과

Fig. 10. Results of post process.

3. Times for Tree Construction through the

 Serial Method

Fig. 11 shows execution times of PTAS

approximate MST constructed by the serial method

with given experimental parameters. In the serial

method, among areas in a layer only one is processed

at a time according to a predefined order and then

the next one is processed. Fig. 11 shows that the

more partition cells present in the bottom layer, the

greater is the saving ratio of execution time. When

the terminal node number is 15000, the time saving

ratio of the tree constructed with sixteen partition

cells is 89.2%, and the ratio of the tree constructed

(a) 직렬방법에서의 트리 생성 시간

(a) Tree building time in serial method

(b) 직렬방법의 시간 절감 비율

(b) Time curtailment ratio by serial method

그림 11. 직렬 PTAS 근사 최소 신장트리 생성 시간

Fig. 11. Construction time of PTAS approximate minimum

spanning tree by the serial method.

(524)

2011년 9월 전자공학회 논문지 제 48 권 CI 편 제 5 호 71

with two partition cells is 20.1%. If the number of

terminal nodes is more for the same number of

partition cells, then the time saving ratios are even

somewhat higher. When the partition cell number is

sixteen, the PTAS approximate MST constructed by

the serial method with 3000 terminal nodes shows a

73.7% time saving ratio compared to the optimal tree,

and the PTAS tree with 15000 terminal nodes

achieves a savings ratio of 89.2%.

Thus, we have demonstrated via laboratory

experiments that our scheme, which does not require

an optimal MST, deals successfully with a very large

number of terminal nodes and also does not take too

much time for building the application, so it can be a

good practical choice.

4. Times for Tree Construction through the

 Parallel Method

Fig. 12 shows execution times for constructing

PTAS approximate MSTs by the parallel method

with given experimental parameters. In the parallel

method, each partition cell of the bottom layer may

have its own processor working independently on its

connecting structures. Because execution time for the

bottom layer is the longest of all execution times for

constructing a tree, connecting structures of other

layers except for the bottom layer can be built by

similar application of the serial method. Through

experimental analysis, we have verified that most of

the execution time is spent in making connecting

structures for the bottom layer. Therefore, if each

step for the bottom layer is processed in parallel,

much time can be saved. However, if there are many

merging steps to construct the target tree, more time

savings can be expected by using some well-placed

processors. Fig. 12 shows that when the number of

partition cells is the same, if the number of terminal

nodes increases, savings ratios of execution time for

constructing trees either increase somewhat or show

no change, as with the serial method. When the

number of terminal nodes is the same, if the partition

cells of bottom line are greater, the execution time is

(a) 병렬방법에서의 트리 생성 시간

(a) Tree building times in parallel method

(b) 병렬방법의 시간 절감 비율

(b) Time curtailment ratio by parallel method

그림 12. 병렬 PTAS 근사 최소 신장트리 생성 시간

Fig. 12. Construction time of PTAS approximate

minimum spanning tree by the parallel method.

much shorter. Saving ratios for the parallel method

are far greater than those for the serial method with

regard to tree construction time.

Construction time using the parallel method for the

PTAS approximate MST with 15000 terminal nodes

and sixteen partition cells is 99% shorter than that

for the optimal MST. This construction time is also

92.4% shorter than that for the PTAS tree using the

serial method. Execution time using the parallel

method for the PTAS tree with 15000 terminal nodes

and two partition cells is 58% shorter than execution

time for the optimal tree and 47.7% shorter than

execution time using the serial method.

(525)

72 대형 유클리드 최소신장트리 문제해결을 위한 다항시간 근사 법 김인범

Therefore in an environment where use of the

parallel method is possible, if each partition cell in

the bottom layer is designed to be handled by its

own processor, construction time for goal tree by our

proposed parallel method can be much less than that

using the MST algorithm and also less than that

using the serial method described in section 4.3

above.

5. Running Time

Running time for constructing a MST by Prim’s

algorithm is × log . In the naïve algorithm for

the EMST, it is  × log   , because

  time is needed for creating complete

connections. Running time for the approximate EMST

proposed in this paper using PTAS is composed of

time for building connecting structures of each

partition cell in the bottom layer, time for making

table entries for connecting structures in each layer,

and time for table retrievals. Time for building

connecting structures of each partition cell of the

bottom layer is as follows:

In serial method:


  



 ×× ×
 (1)

In parallel method:

max≤  ≤  ×× ×
 (2)

In Expressions (1) and (2), l is the number of

candidate line separators and k is the number of

partition cells in the bottom layer. The symbol ni

represents the number of terminal nodes that belong

to partition cell i, and if the distribution of terminal

nodes is nearly even, every ni is about N/k=n. And t1

is the time per each terminal node for building a

connecting structure for the MST. The symbol m is

the number of combinations of selected portals on

each candidate line separator, which is 
  



 where

r is the maximum number of portals per each line

separator. In this paper, for simple implementation, a

PTAS is designed by l=1 and m=2. So Expressions

(1) and (2) can be depicted as follows:

In the serial method:


  



 ×× ×
  ×

  




  (3)

In the parallel method:

max ≤  ≤   ×× ×
  ×max ≤  ≤  

    

(4)

Each entry in all tables stores information for each

connecting structure of a layer, and E is the number

of the entries for all tables. When the number of

portals on each line separator is two and only one of

them is selected, E can be expressed as follows:







  (5)

In expression (5), d is the number of layers for

PTAS. The symbol d, which is independent of the

number of terminal nodes, can be determined by the

PTAS designer. So the running time of the proposed

and designed PTAS for the large scale approximate

EMST can be expressed as follows:

 × × ≤  (6)

In expression (6), t2 is the time for creating each

entry in the tables, and t3 is the time for retrieving

table entries. Compared with the time for building

connecting structures in partition cells of the bottom

layer, the time for creating or retrieving table entries

is very tiny; therefore, it can be disregarded. Thus,

the running time of our proposed well-designed

PTAS can be shorter than that for the naïve optimal

EMST when the distribution of terminal nodes is

nearly even.

Ⅴ. Conclusions

It should be noted that our proposed scheme is

encumbered with many restrictions. Processing steps

of the scheme are simplified by some methods such

(526)

2011년 9월 전자공학회 논문지 제 48 권 CI 편 제 5 호 73

as the cut-branch technique. These restrictions may

affect the approximation rate of the trees that we

construct. However, if original PTASs without

restrictions are applied to a problem, huge execution

times and memories will be required, which will

throw into doubt the practical usage of our scheme.

We have also attempted to use our proposed

scheme to solve other problems that have been

solved by well-known algorithms but which in

special case of real world, can issue some practical

difficulties. Through our scheme, running time and

memory space are expected to be saved for the

problems. Another work is to study the proposed

PTAS under diverse environments. Applying our

scheme to non-even distributed terminal nodes is an

example. In this paper, we assumed nearly even

distributed terminal nodes. In real world application, a

solution of PTAS for non-even distributed terminals

may be necessary.

References

[1] S. Arora, “Polynomial Time Approximation

Schemes for Euclidean TSP and Other

Geometric Problems,” Journal of ACM, Vol.45,

no.5, pp.753-782, 1998.

[2] S. Arora, “Nearly Linear Time Approximation

Schemes for Euclidean TSP and Other

Geometric Problems,” in Proc. of the 38th IEEE

Symposium on Foundations of Computer Science

1997, Miami, pp.554-563, 1997.

[3] X. Cheng, J. Kim and B. Lu, “A Polynomial

Time Approximation Scheme for the Problem of

Interconnecting Highways,” Journal of

Combinatorial Optimization, Vol.5, no.3,

pp.327-343, 2001.

[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C.

Stein, Introduction to Algorithm, 2nd ed., MIT

Press, Cambridge, pp.525-579, 2001.

[5] S. Pettie and V. Ramachandran, “An Optimal

Minimum Spanning Tree Algorithm,” Journal of

the ACM, Vol.49, no.1, pp.16-34, 2002.

[6] F.P. Preparata and M.I. Shamos, “Computational

Geometry: An Introduction,” Springer, New

York, 1985.

[7] J. Li, D. Cordes and J. Zhang, “Power-Aware

Routing Protocols in Ad Hoc Wireless Sensor

Networks,” IEEE Wireless Communications,

Vol.12, no.6, pp.69-81, 2005.

[8] J. Kim and E. Goo, “Sharing Error Allowances

for the Analysis of Approximation Schemes,”

Journal of the Institute of Electronics Engineers

of Korea TC, Vol.46, no.5, pp.1-7, 2009.

[9] J. Kim, M. Cardei, I. Cardei and X. Jia, “A

Polynomial Time Approximation Scheme for the

Grade of Services Steiner Minimum Tree

Problem,” Journal of Global Optimization, Vol.24,

pp.437-448 , 2002.

저 자 소 개

김 인 범(정회원)

대한전자공학회논문지

TC편 47권 11호 2010년 11월, 7-13쪽 참고

(527)

