• Title/Summary/Keyword: Input Faults

Search Result 174, Processing Time 0.025 seconds

Noisy Time Varying Vibration Signal Analysis using Adaptive Predictor-Binary Tree Structured Filter Bank System (적응예측기-이진트리구조 필터뱅크 시스템을 이용한 잡음이 부가된 시변 진동신호 분석)

  • Bae, Hyeon-Deok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.1
    • /
    • pp.77-84
    • /
    • 2017
  • Generally, a time-varying vibration signal is generated in a rotating machine system, and when there is a failure in the rotating machine, the signal contains noise. In this paper, we propose a system consisting of an adaptive predictor and a binary tree filter bank for analyzing time - varying vibration signals with noise. And the vibration signal analyzed results in this system is used for fault diagnosis of the rotating machine. The adaptive predictor of the proposed system predicts the periodic signal components, and the filter bank system decomposes the difference signal between the input signal and the predicted periodic signal into subband. Since each subband signal includes a noise signal component due to a failure, it is possible to diagnose the failure of the using rotary machine. The validity of the proposed vibration signal analysis method is shown in the simulations, where the periodic components cancelled vibrating signals are decomposed to 32 subband, and the signal characteristics related faults are analyzed.

Design of Optimized Radial Basis Function Neural Networks Classifier Using EMC Sensor for Partial Discharge Pattern Recognition (부분방전 패턴인식을 위해 EMC센서를 이용한 최적화된 RBFNNs 분류기 설계)

  • Jeong, Byeong-Jin;Lee, Seung-Cheol;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1392-1401
    • /
    • 2017
  • In this study, the design methodology of pattern classification is introduced for avoiding faults through partial discharge occurring in the power facilities and local sites. In order to classify some partial discharge types according to the characteristics of each feature, the model is constructed by using the Radial Basis Function Neural Networks(RBFNNs) and Particle Swarm Optimization(PSO). In the input layer of the RBFNNs, the feature vector is searched and the dimension is reduced through Principal Component Analysis(PCA) and PSO. In the hidden layer, the fuzzy coefficients of the fuzzy clustering method(FCM) are tuned using PSO. Raw datasets for partial discharge are obtained through the Motor Insulation Monitoring System(MIMS) instrument using an Epoxy Mica Coupling(EMC) sensor. The preprocessed datasets for partial discharge are acquired through the Phase Resolved Partial Discharge Analysis(PRPDA) preprocessing algorithm to obtain partial discharge types such as void, corona, surface, and slot discharges. Also, when the amplitude size is considered as two types of both the maximum value and the average value in the process for extracting the preprocessed datasets, two different kinds of feature datasets are produced. In this study, the classification ratio between the proposed RBFNNs model and other classifiers is shown by using the two different kinds of feature datasets, and also we demonstrate the proposed model shows superiority from the viewpoint of classification performance.

Development of Diagnosis System for LNG Pump (LNG 펌프 고장 진단 시스템 개발)

  • Hong S. H.;Lee Y. W.;Hwang W G.;Ki Ch. D.;Kim Y. B.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.3
    • /
    • pp.88-95
    • /
    • 1998
  • Vibration analysis of rotating machinery can give an indication of possible faults thus allowing maintenance before further damage occurs. Current predictive maintenance system installed in Pyung-tak has the ability to diagnose the mechanical problems within the LNG Pump when the vibration exceeds preset overall alarm levels. In this study, LNG pump auto-diagnosis system based upon Windows NT and DSP Board is developed. This system analysis velocity signal acquired from dual accelerometer input monitor system to diagnose pump condition. Many plots which display machine condition are shown and features of vibration are stored in every time. If the fault is found, the system diagnoses automatically using expert system and trend monitoring. Operator checks pump condition intuitively using personal computer monitor.

  • PDF

Security Analysis of the PHOTON Lightweight Cryptosystem in the Wireless Body Area Network

  • Li, Wei;Liao, Linfeng;Gu, Dawu;Ge, Chenyu;Gao, Zhiyong;Zhou, Zhihong;Guo, Zheng;Liu, Ya;Liu, Zhiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.476-496
    • /
    • 2018
  • With the advancement and deployment of wireless communication techniques, wireless body area network (WBAN) has emerged as a promising approach for e-healthcare that collects the data of vital body parameters and movements for sensing and communicating wearable or implantable healthful related information. In order to avoid any possible rancorous attacks and resource abuse, employing lightweight ciphers is most effective to implement encryption, decryption, message authentication and digital signature for security of WBAN. As a typical lightweight cryptosystem with an extended sponge function framework, the PHOTON family is flexible to provide security for the RFID and other highly-constrained devices. In this paper, we propose a differential fault analysis to break three flavors of the PHOTON family successfully. The mathematical analysis and simulating experimental results show that 33, 69 and 86 random faults in average are required to recover each message input for PHOTON-80/20/16, PHOTON-160/36/36 and PHOTON-224/32/32, respectively. It is the first result of breaking PHOTON with the differential fault analysis. It provides a new reference for the security analysis of the same structure of the lightweight hash functions in the WBAN.

A Study on Stator Winding Turn-Fault Model for Fault Diagnosis in Inverter-Driven Permanent Magnet Moor Drives (고장진단을 위한 영구자식 동기전동기의 권선 단락에 의한 고장모델 연구 및 특성해석)

  • Kim, Kyeong-Hwa;Choi, Dong-Uk;Gu, Bon-Gwan;Jung, In-Soung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.18-28
    • /
    • 2009
  • To analyze influences under faults caused by a stator winding short and to evaluate an effectiveness of a diagnostic algorithm a faulty model for an inverter-driven permanent magnet synchronous motor is presented. Even though the conventional dq motor model obtained through the transformation of phase voltage model is widely used to analyze and control the motor, it can not be used in the analysis of a faulty motor since the 3-phase balanced condition is no longer hold under the fault caused by a stator winding short, and thus, it is very difficult to obtain motor input voltages from the pole voltage of an inverter. To overcome this problem, a faulty model for an inverter-driven permanent magnet synchronous motor is proposed by considering the line voltage of 3-phase variables. The effectiveness of the proposed faulty model is verified through comparative simulations and experiments using DSP TMS320F28335 and motor built to allow a partial short of inter-turn.

Security Analysis of the Whirlpool Hash Function in the Cloud of Things

  • Li, Wei;Gao, Zhiyong;Gu, Dawu;Ge, Chenyu;Liao, Linfeng;Zhou, Zhihong;Liu, Ya;Liu, Zhiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.536-551
    • /
    • 2017
  • With the advancement and deployment of leading-edge telecommunication technologies for sensing and collecting, computing related information, Cloud of Things (CoTs) has emerged as a typical application platform that is envisioned to revolutionize the daily activities of human society, such as intelligent transportation, modern logistics, food safety, environmental monitoring, etc. To avoid any possible malicious attack and resource abuse, employing hash functions is widely recognized as one of the most effective approaches for CoTs to achieve message integrity and data authentication. The Whirlpool hash function has served as part of the joint ISO/IEC 10118-3 International Standard by the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC). In this paper, we propose an effective differential fault analysis on Whirlpool in the byte-oriented random fault model. The mathematical analysis and experimental results show that 8 random faults on average are required to obtain the current 512-bit message input of whirlpool and the secret key of HMAC-Whirlpool. Our work demonstrates that Whirlpool and HMAC-Whirlpool are both vulnerable to the single byte differential fault analysis. It provides a new reference for the security analysis of the same structure of the hash functions in the CoTs.

Design and Implementation of Fault-tolerant Communication Middleware for a High-reliable Launch Control System (고신뢰성 발사통제시스템을 위한 고장허용 통신 미들웨어 설계 및 구현)

  • Song, Dae-Ki;Jang, Bu-Cheol;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.8
    • /
    • pp.37-46
    • /
    • 2008
  • Launch control system controls the sequence for launching missile in weapon systems. This system have to generate the engagement plan, input information and launch the missile in timeliness requirement. Such a system may fail to operate correctly either due to errors in hardware and software or due to violation of timing constraints. We presented fault-tolerant ethernet for embedded real-time system like launch control system. This approach is designed to handle network faults using dual commercial-off-the-shelf(COTS) network devices. To support fault-tolerant ethernet each node is composed dual channel ethernet and designed the communication middleware for network fault detect and recovery. Especially for time-critical system, the middleware is being developed to achieve that no point of network failure shall take down or cause loss of communication to network nodes.

Fault Classification for Rotating Machinery Using Support Vector Machines with Optimal Features Corresponding to Each Fault Type (결함유형별 최적 특징과 Support Vector Machine 을 이용한 회전기계 결함 분류)

  • Kim, Yang-Seok;Lee, Do-Hwan;Kim, Seong-Kook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1681-1689
    • /
    • 2010
  • Several studies on the use of Support Vector Machines (SVMs) for diagnosing rotating machinery have been successfully carried out, but the fault classification depends on the input features as well as a multi-classification scheme, binary optimizer, kernel function, and the parameter to be used in the kernel function. Most of the published papers on multiclass SVM applications report the use of the same features to classify the faults. In this study, simple statistical features are determined on the basis of time domain vibration signals for various fault conditions, and the optimal features for each fault condition are selected. Then, the optimal features are used in the SVM training and in the classification of each fault condition. Simulation results using experimental data show that the results of the proposed stepwise classification approach with a relatively short training time are comparable to those for a single multi-class SVM.

Testing of CMOS Operational Amplifier Using Offset Voltage (오프셋 전압을 이용한 CMOS 연산증폭기의 테스팅)

  • Song, Geun-Ho;Kim, Gang-Cheol;Han, Seok-Bung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.1
    • /
    • pp.44-54
    • /
    • 2001
  • In this paper, a novel test method is proposed to detect the hard and soft fault in analog circuits. The proposed test method makes use of the offset voltage, which is one of the op-amps characteristics. During the test mode, CUT is modified to unit gain op-amps with feedback loop. When the input of the op-amp is grounded, a good circuit has a small offset voltage, but a faulty circuit has a large offset voltage. Faults in the op-amp which cause the offset voltage exceeding predefined range of tolerance can be detected. In the proposed method, no test vector is required to be applied. Therefore the test vector generation problem is eliminated and the test time and cost is reduced. In this note, the validity of the proposed test method has been verified through the example of the dual slope A/D converter. The HSPICE simulations results affirm that the presented method assures a high fault coverage.

  • PDF

Development of High Efficiency Self Diagnosis Type Neon Transformer using Groin Direction of Non-Oriented Silicon Steel Strip (압연 방향을 적용한 자체 진단형 고효율 네온관용 변압기)

  • 변재영;김윤호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • In this paper, a high efficiency leakage transformer for neon tube is developed to improve its power factor, to reduce its core loss and weight by using a technique of shape optimization and grain direction of non-oriented silicon steel strip. A protection circuit is designed for all types of neon transformer loaded with one or more neon tubes. Whenever the neon tube fails to be started up or comes to the life end, or encounters faults with open-circuits at the output terminals of the neon transformer, the electronic type protection circuit will be initiated to avoid more critical hazards. These neon transformers need a electronic type protection circuit to prevent from current stresses on circuit components by neon tube fail. The input of the transformer is automatically cut on when the abnormal condition occurs, preventing waste of no-load power.