Seo, Min;Chai, Jong-Yil;Hong, Jong Ha;Shin, Dong Hoon
Parasites, Hosts and Diseases
/
v.57
no.6
/
pp.635-638
/
2019
Horace N. Allen, an American physician, was a Presbyterian missionary to Korea. In 1886, he wrote the annual report of the Korean government hospital, summarizing patient statistics according to outpatient and inpatient classification for the first ever in Korean history. In the report, he speculated that hemoptysis cases of outpatient might have been mainly caused by distoma. Allen's conjecture was noteworthy because only a few years lapsed since the first scientific report of paragonimiasis. However, he was not sure of his assumption either because it was not evidently supported by proper microscopic or post-mortem examinations. In this letter, we thus revisit his assumption with our parasitological data recently obtained from Joseon period mummies.
Concerns about growing health insurance expenditures became a national Issue in 2001 when the National Health Insurance went into a deficit. Increases in spending for ambulatory care shared the largest portion of the problem. Methods and systems to control the spending should be developed and a system to measure case mix of providers is one of core components of the control system. The objectives of this article is to examine the feasibility of applying Korean Diagnosis Related Groups (KDRGs) to classify health insurance claims for ambulatory care and to identify problem areas of the classification. A database of 11,586,270 claims for ambulatory care delivered during January 2002 was obtained for the study, and the final number of claims analyzed was 8,319,494 after KDRG numbers were assigned to the data and records with an error KDRG were excluded from the study. The unit of analysis was a claim and resource use was measured by the sum of charges incurred during a month at a department of a hospital of at a clinic. Within group variance was assessed by th coefficient of variation (CV), and the classification accuracy was evaluated by the variance reduction achieved by the KDRG classification. The analyses were performed on both all and non-outlier data, and on a subset of the database to examine the validity of study results. Data were assigned to 787 KDRGs among 1,244 KDRGs defined in the classification system. For non-outlier data, 77.4% of KDRGs had a CV of charges from tertiary care hospitals less than 100% and 95.43% of KDRGs for data from clinics. The variance reduction achieved by the KDRG classification was 40.80% for non-outlier claims from tertiary care hospitals, 51.98% for general hospitals, 40.89% for hospitals, and 54.99% for clinics. Similar results were obtained from the analyses performed on a subset of the study database. The study results indicated that KDRGs developed for a classification of inpatient care could be used for ambulatory care, although there were areas where the classification should be refined. Its power to predict tile resource utilization showed a potential for its application to measure case mix of providers for monitoring and managing delivery of ambulatory care. The issue concerning the quality of diagnostic information contained in insurance claims remains to be improved, and significance of future studies for other classification systems based on visits or episodes is guaranteed.
Kim, Ji-Hyun;Cho, Byung-Mann;Hwang, In-Kyung;Son, Min-Jeong;Yoon, Tae-Ho
Health Policy and Management
/
v.18
no.4
/
pp.66-84
/
2008
Objectives: This study aimed to. offer some fundamental evidences for the stroke management policy by investigating the trends of medical care utilization and regionalization in stroke inpatients. Methods: We used the National Health Insurance claims and registry data for stroke inpatients from 1998 to 2005. Among all stroke inpatient claims data, self-employed insured and their dependents were only included in this study. The classification of stroke was based on ICD-10(I60-I69) and its subtype was divided by hemorrhage(I60-I62) and infarction(I63-I64) type. To evaluate regionalization of medical care utilization, relevance index was calculated by regions. The regions were classified 8 large catchment areas and 163 self authorized areas. Results: The overall medical care utilization rate of stroke inpatient has been increased, especially infarction subtype. Among medical care institutions, the utilization of hospital has been the most rapidly increased. Although considered annual rate of interest, total medical cost of stroke inpatients has been increased, Totally, more than 84% of stroke inpatient were admitted to medical care institutions in their own large catchment area during 1998-2005. The relevance indices in their own large catchment area (self sufficiency rates) were more than 70% in most areas regardless of stroke subtype except Chungbuk catchment area. Self sufficiency rates of stroke inpatients among 163 self authorized areas in 1998 and 2005 were 84.2% and 83.1% in metropolitan, 46.7% and 45.5% in urban, and 19.5% and 22.6% in rural areas, respectively. Conclusion: Stroke management policy for improvement of distribution at the district level, especially in rural areas, may be helpful for reducing regional inequality in stroke.
Purpose: The purpose of this study was to calculate the total daily nursing workload and the optimum number of nurses per intensive care unit (ICU) based on the nursing intensity and the direct nursing time per inpatient using the patient classification. Methods: Two ICUs at one general hospital were investigated. To calculate the nursing intensity, patient classification according to the nursing needs was conducted for 10 days in each unit during September 2018. We performed patient classifications for a total of 167 patient-days in the Medical Intensive Care Unit (MICU) and 86 patient-days in the Surgical Intensive Care Unit (SICU). The total number of person-days for nurses who responded to the Nursing Time survey was 151 for MICU and 85 for SICU. In each unit, direct and non-direct nursing hours, nursing intensity score, and direct nursing hours were analyzed using descriptive statistics such as frequency, percentage, and average calculated using Microsoft Excel. The amount of nursing workload and the optimum number of nurses were calculated according to the formula developed by the authors. Findings: For the MICU, the average direct nursing time per patient was 5.59 hours for Group 1, 6.98 hours for Group 2, and 9.28 hours for Group 3. For the SICU, the average direct nursing time per patient was 5.43 hours for Group 1, 7.21 hours for Group 2, 9.75 hours for Group 3, and 12.82 hours for Group 4. Practical Implications: This study confirmed that the appropriate number of nurses was not secured in the nursing unit of this study, and that leisure time such as meal time during nursing work hours was not properly guaranteed. The findings suggest that to create working environments where nurses can serve for extended periods of time without compromising their professional standards, hospitals should secure an appropriate number of nurses.
Pak, Doohyun;Hwang, Mingyu;Lee, Minji;Woo, Sung-Il;Hahn, Sang-Woo;Lee, Yeon Jung;Hwang, Jaeuk
Korean Journal of Biological Psychiatry
/
v.27
no.1
/
pp.18-26
/
2020
Objectives The aim was to find effective vectorization and classification models to predict a psychiatric diagnosis from text-based medical records. Methods Electronic medical records (n = 494) of present illness were collected retrospectively in inpatient admission notes with three diagnoses of major depressive disorder, type 1 bipolar disorder, and schizophrenia. Data were split into 400 training data and 94 independent validation data. Data were vectorized by two different models such as term frequency-inverse document frequency (TF-IDF) and Doc2vec. Machine learning models for classification including stochastic gradient descent, logistic regression, support vector classification, and deep learning (DL) were applied to predict three psychiatric diagnoses. Five-fold cross-validation was used to find an effective model. Metrics such as accuracy, precision, recall, and F1-score were measured for comparison between the models. Results Five-fold cross-validation in training data showed DL model with Doc2vec was the most effective model to predict the diagnosis (accuracy = 0.87, F1-score = 0.87). However, these metrics have been reduced in independent test data set with final working DL models (accuracy = 0.79, F1-score = 0.79), while the model of logistic regression and support vector machine with Doc2vec showed slightly better performance (accuracy = 0.80, F1-score = 0.80) than the DL models with Doc2vec and others with TF-IDF. Conclusions The current results suggest that the vectorization may have more impact on the performance of classification than the machine learning model. However, data set had a number of limitations including small sample size, imbalance among the category, and its generalizability. With this regard, the need for research with multi-sites and large samples is suggested to improve the machine learning models.
Purpose: The objectives for this study are to produce the comprehensive management indexes and find their application strategies for appropriate medical care in primary care clinics under workers' compensation insurance. Method: Data of this study was workers' compensation insurance medical fees claim's data from July 2006 to June 2007. Data were analyzed using SAS 9.1 version by applying descriptive statistics and Pearson's correlation. The indexes such as costliness index(CI), standard medical fee were calculated based on the fourth revision of korean classification of diseases(KCD-4.). Results: The CI, visiting index(VI), outliers index(OI), and medical review adjustment percentage were positively correlated in the both inpatient and outpatient medical fees in primary care clinics under workers' compensation insurance. The major medical specialities were neurological surgery, general medicine, general surgery, rehabitational medicine, and orthopedic surgery. The CIs were slightly high in rehabitational medicine among major medical specialities. The CIs were mostly high in diagnosis, test, anesthesia, and rehabitational assistive device fees among major medical specialities. The CIs were slightly high in Kwangju, Daegu, Daejeon, and Busan districts among district management centers of Korea Workers' Compensation and Welfare Service. Conclusions: We suggest the continuous development of appropriate disease classification system and medical care quality indicators to successfully take root the comprehensive management for appropriate medical care under workers' compensation.
Objective: This study explored the reuse of data captured into an electronic nursing record system using the International Classification for Nursing Practice to support nursing research of inpatient's falls. Methods: Risk factors relevant to inpatients falls ;n an acute setting were identified from the literature review. Four risk assessment tools and two risk identification studies were selected. To examine the availability of coded data in an electronic nursing record system for the identified fall fisk factors, we reviewed 11.319 hospital-day records of 118 patients who were reported by the self-report system. Results: We identified 24 fall risk factors of five categories from the literature review, which were used to identify the standard nursing statements addressing fall risks. One hundred thirty five nursing statements were searched from the hospital's nursing data dictionary of statements and were matched with 14 fall fisk factors. Using the 135 statements. we found that mental status, catheter of drip in situ, abnormal gait, insomnia, surgical procedure. and dizziness/vertigo appeared frequently in the nursing records of inpatients with fall s. Also we found 6 risk factors more through the record review. Conclusion: The electronic records would be a good research source for inpatients' falls. Specifically international classification for nursing practice based nursing record system has the potential for promoting clinical researches.
The Purpose of this study was to evaluate the reliability and the validation of four scales of Questionnaire for Sasang Constitution Classification (QSCC), newly constructed through statistical item analysis and to examine their diagnostic discrimination power. QSCC was administered to 105 inpatient at Kyung-Hee Oriental Medicine Hospital and local oriental clinics and 136 undergraduated students. 2 weeks later, QSCC was readministered to 220 same subjects. Data were collected during about 2 months from february to Apr. 20, 1992. For the purposes of this study, the collected data were analyzed by internal consistancy, test-retest reliability, ANOVA, Pearson correlation and discrimination analysis of spss pc+ v3.0 program. The results were as follows: 1. The reliability of four scales of QSCC was relatively favorable. The internal consistancy and test-retest reliability of Tae-Yaung-In(太陽人) scale were respectively Cronbach's ${\alpha}=0.9$ and r=0.89. Those of So-Yaung-In(少陽人) scale were respectively ${\alpha}=0.81$ and r=0.93. Those of Tae-Em-In(太陰人) scale were respectively ${\alpha}=0.72$ and r=0.74. Those of So-Em-In(少陰人) scale were respectively ${\alpha}=0.81$ and r=0.93. 2. The diagnostic discrimination abilities(Hit-ratio=56%)of QSCC were found to have more about 20% improvement than propotional chance criteria(37%). Especially, Hit-ratios for So-Yaung-In(63%) and Tae-Em-In(60%) were more high than that for So-Em-In(48%) 3. For male subjects, the construct validity of QSCC was founded to be relatively favorable. But that of QSCC for females was poor.
With an economic development and epidemiologic transition, the burden of disease due to chronic diseases and accidents is increasing. However, in most of developing countries, long-term care facilities are not available, therefore acute care facilities should provide both acute and long-term care services. It is also true in Korea. The demand for long-term care services needs to be estimated to establish the adequate supply system of health resources. This article introduces the reclassification methodology of inpatients' healthcare utilization to acute and long-term care services. All discharged patients from hospitals for one month were analyzed. The distribution of inpatients' hospital days were fitted to Chi-squared distribution by ICD disease categories, and they were grouped in five clusters. For each cluster, the lower and upper limit of classification criteria to acute and long-term care services were chosen. Summarizing all hospital days corresponding to acute and long-term care respectively, 24 to 28 percent of inpatient services fumed out to be long-term care services. The study results are consistent with those of the existing studies. They can be used practically in the allocation of long-term care resources.
Objectives : This cross-sectional study aims to investigate the differences in general health status (GHS) and physical care burdens (PCB) of inpatient groups in long-term care hospitals (LTCH). Methods : The data of 228 patients were analyzed by integrating the electronic medical record (EMR) data of 2016, recorded by the nurses of hospitalized patients in the hospital. Results : There was a statistically significant difference in the GHS between the high-medical demand group and the other groups, but there was no difference in the GHS among other groups. The overall PCB was higher in the high-medical demand group than in the middle-medical demand, and cognitive impairment groups, but not in the problem behavioral group. Conclusions : The current classification of patient groups has shown limitations in terms of the basis of differential benefits of the groups. In particular, the PCB of the problem behavior group was not different from that of any group; hence, it should be adjusted through further study. To control the surge of medical care costs, it is necessary to improve the irrationality of the LTCH pay system in terms of the integration and continuity for elderly care.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.