• 제목/요약/키워드: Inositol-1,4,5-triphosphate receptors

검색결과 12건 처리시간 0.025초

Role of Type 1 Inositol 1,4,5-triphosphate Receptors in Mammalian Oocytes

  • Yoon, Sook Young
    • 한국발생생물학회지:발생과생식
    • /
    • 제23권1호
    • /
    • pp.1-9
    • /
    • 2019
  • The ability of oocytes to undergo normal fertilization and embryo development is acquired during oocyte maturation which is transition from the germinal vesicle stage (GV), germinal vesicle breakdown (GVBD) to metaphase of meiosis II (MII). Part of this process includes redistribution of inositol 1, 4, 5-triphosphate receptor (IP3R), a predominant $Ca^{2+}$ channel on the endoplasmic reticulum membrane. Type 1 IP3R (IP3R1) is expressed in mouse oocytes dominantly. At GV stage, IP3R1 are arranged as a network throughout the cytoplasm with minute accumulation around the nucleus. At MII stage, IP3R1 diffuses to the entire cytoplasm in a more reticular manner, and obvious clusters of IP3R1 are observed at the cortex of the egg. This structural reorganization provides acquisition of $[Ca^{2+}]_i$ oscillatory activity during fertilization. In this review, general properties of IP3R1 in somatic cells and mammalian oocyte are introduced.

Calcium Signaling in Salivary Secretion

  • Kim, Jin Man;Lee, Sang-Woo;Park, Kyungpyo
    • Journal of Korean Dental Science
    • /
    • 제10권2호
    • /
    • pp.45-52
    • /
    • 2017
  • Calcium has versatile roles in diverse physiological functions. Among these functions, intracellular $Ca^{2+}$ plays a key role during the secretion of salivary glands. In this review, we introduce the diverse cellular components involved in the saliva secretion and related dynamic intracellular $Ca^{2+}$ signals. Calcium acts as a critical second messenger for channel activation, protein translocation, and volume regulation, which are essential events for achieving the salivary secretion. In the secretory process, $Ca^{2+}$ activates $K^+$ and $Cl^-$ channels to transport water and electrolyte constituting whole saliva. We also focus on the $Ca^{2+}$ signals from intracellular stores with discussion about detailed molecular mechanism underlying the generation of characteristic $Ca^{2+}$ patterns. In particular, inositol triphosphate signal is a main trigger for inducing $Ca^{2+}$ signals required for the salivary gland functions. The biphasic response of inositol triphosphate receptor and $Ca^{2+}$ pumps generate a self-limiting pattern of $Ca^{2+}$ efflux, resulting in $Ca^{2+}$ oscillations. The regenerative $Ca^{2+}$ oscillations have been detected in salivary gland cells, but the exact mechanism and function of the signals need to be elucidated. In future, we expect that further investigations will be performed toward better understanding of the spatiotemporal role of $Ca^{2+}$ signals in regulating salivary secretion.

Effects of Inositol 1,4,5-triphosphate on Osteoclast Differentiation in RANKL-induced Osteoclastogenesis

  • Son, A-Ran;Kim, Min-Seuk;Jo, Hae;Byun, Hae-Mi;Shin, Dong-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권1호
    • /
    • pp.31-36
    • /
    • 2012
  • The receptor activator of NF-${\kappa}B$ ligand (RANKL) signal is an activator of tumor necrosis factor receptor-associated factor 6 (TRAF6), which leads to the activation of NF-${\kappa}B$ and other signal transduction pathways essential for osteoclastogenesis, such as $Ca^{2+}$ signaling. However, the intracellular levels of inositol 1,4,5-trisphosphate ($IP_3$) and $IP_3$-mediated cellular function of RANKL during osteoclastogenesis are not known. In the present study, we determined the levels of $IP_3$ and evaluated $IP_3$-mediated osteoclast differentiation and osteoclast activity by RANKL treatment of mouse leukemic macrophage cells (RAW 264.7) and mouse bone marrow-derived monocyte/macrophage precursor cells (BMMs). During osteoclastogenesis, the expression levels of $Ca^{2+}$ signaling proteins such as $IP_3$ receptors ($IP_3Rs$), plasma membrane $Ca^{2+}$ ATPase, and sarco/endoplasmic reticulum $Ca^{2+}$ ATPase type2 did not change by RANKL treatment for up to 6 days in both cell types. At 24 h after RANKL treatment, a higher steady-state level of $IP_3$ was observed in RAW264.7 cells transfected with green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of phospholipase C (PLC) ${\delta}$, a probe specifically detecting intracellular $IP_3$ levels. In BMMs, the inhibition of PLC with U73122 [a specific inhibitor of phospholipase C (PLC)[ and of $IP_3Rs$ with 2-aminoethoxydiphenyl borate (2APB; a non-specific inhibitor of $IP_3Rs$) inhibited the generation of RANKL-induced multinucleated cells and decreased the bone-resorption rate in dentin slice, respectively. These results suggest that intracellular $IP_3$ levels and the $IP_3$-mediated signaling pathway play an important role in RANKL-induced osteoclastogenesis.

Serotonin (5-HT) Receptor Subtypes Mediate Regulation of Neuromodulin Secretion in Rat Hypothalamic Neurons

  • Chin, Chur;Kim, Seong-Il
    • Genomics & Informatics
    • /
    • 제5권2호
    • /
    • pp.77-82
    • /
    • 2007
  • Serotonin (5-HT), the endogenous nonselective 5-HT receptor agonist, activates the inositol-1,4,5-triphosphate/calcium $(InsP3/Ca^{2+})$ signaling pathway and exerts both stimulatory and inhibitory actions on cAMP production and neuromodulin secretion in rat hypothalamic neurons. Specific mRNA transcripts for 5-HT1A, 5-HT2C and 5-HT4 were identified in rat hypothalamic neurons. These experiments were supported by combined techniques such as cAMP and a $Ca^{2+}$ assays in order to elucidate the associated receptors and signaling pathways. The cAMP production and neuromodulin release were profoundly inhibited during the activation of the Gi-coupled 5-HT1A receptor. Treatment with a selective agonist to activate the Gq-coupled 5-HT2C receptor stimulated InsP3 production and caused $Ca^{2+}$ release from the sarcoplasmic reticulum. Selective activation of the Gs-coupled 5-HT4 receptor also stimulated cAMP production, and caused an increase in neuromodulin secretion. These findings demonstrate the ability of 5-HT receptor subtypes expressed in neurons to induce neuromodulin production. This leads to the activation of single or multiple G-proteins which regulate the $InsP3/Ca^{2+}/PLC-{\gamma}$ and adenyl cyclase / cAMP signaling pathways.

Ahcyl2 upregulates NBCe1-B via multiple serine residues of the PEST domain-mediated association

  • Park, Pil Whan;Ahn, Jeong Yeal;Yang, Dongki
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권4호
    • /
    • pp.433-440
    • /
    • 2016
  • Inositol-1,4,5-triphosphate [$IP_3$] receptors binding protein released with $IP_3$ (IRBIT) was previously reported as an activator of NBCe1-B. Recent studies have characterized IRBIT homologue S-Adenosylhomocysteine hydrolase-like 2 (AHCYL2). AHCYL2 is highly homologous to IRBIT (88%) and heteromerizes with IRBIT. The two important domains in the N-terminus of AHCYL2 are a PEST domain and a coiled-coil domain which are highly comparable to those in IRBIT. Therefore, in this study, we tried to identify the role of those domains in mouse AHCYL2 (Ahcyl2), and we succeeded in identifying PEST domain of Ahcyl2 as a regulation region for NBCe1-B activity. Site directed mutagenesis and coimmunoprecipitation assay showed that NBCe1-B binds to the N-terminal Ahcyl2-PEST domain, and its binding is determined by the phosphorylation of 4 critical serine residues (Ser151, Ser154, Ser157, and Ser160) in Ahcyl2 PEST domain. Also we revealed that 4 critical serine residues in Ahcyl2 PEST domain are indispensable for the activation of NBCe1-B using measurement of intracellular pH experiment. Thus, these results suggested that the NBCe1-B is interacted with 4 critical serine residues in Ahcyl2 PEST domain, which play an important role in intracellular pH regulation through NBCe1-B.

The Transcription Factor Mist1 Regulates the Cellular Polarity in Mouse Pancreatic Acinar Cells

  • Yang, Yu-Mi;Lee, Syng-Ill;Shin, Dong-Min
    • International Journal of Oral Biology
    • /
    • 제37권1호
    • /
    • pp.37-41
    • /
    • 2012
  • Pancreatic acinar cells exhibit a polarity that is characterized by the localization of secretory granules at the apical membrane. However, the factors that regulate cellular polarity in these cells are not well understood. In this study, we investigated the effect of Mist1, a basic helix-loop-helix transcription factor, on the cellular architecture of pancreatic acinar cells. Mist1-null mice displayed secretory granules that were diffuse throughout the pancreatic acinar cells, from the apical to basolateral membranes, whereas Mist1 heterozygote mice showed apical localization of secretory granules. Deletion of the Mist1 gene decreased the expression of type 3 inositol 1,4,5-triphosphate receptors ($IP_3R$) but did not affect apical localization and expression of $IP_3R2$. Mist1-null mice also displayed an increase in luminal areas and an increase in the expression of zymogen granules in pancreatic acinar cells. These results suggest that Mist1 plays a critical role in polar localization of cellular organelles and in maintaining cellular architecture in mouse pancreatic acinar cells.

Homer2 regulates amylase secretion via physiological calcium oscillations in mouse parotid gland acinar cells

  • Kang, Namju;Kang, Jung Yun;Shin, Dong Min;Yang, Yu-Mi
    • International Journal of Oral Biology
    • /
    • 제45권2호
    • /
    • pp.58-63
    • /
    • 2020
  • The salivary glands secrete saliva, which plays a role in the maintenance of a healthy oral environment. Under physiological conditions, saliva secretion within the acinar cells of the gland is regulated by stimulation of specific calcium (Ca2+) signaling mechanisms such as increases in the intracellular Ca2+ concentration ([Ca2+]i) via storeoperated Ca2+ entry, which involves components such as Orai1, transient receptor potential (TRP) canonical 1, stromal interaction molecules, and inositol 1,4,5-triphosphate (IP3) receptors (IP3Rs). Homer proteins are scaffold proteins that bind to G protein-coupled receptors, IP3Rs, ryanodine receptors, and TRP channels. However, their exact role in Ca2+ signaling in the salivary glands remains unknown. In the present study, we investigated the role of Homer2 in Ca2+ signaling and saliva secretion in parotid gland acinar cells under physiological conditions. Deletion of Homer2 (Homer2-/-) markedly decreased the amplitude of [Ca2+]i oscillations via the stimulation of carbachol, which is physiologically concentrated in parotid acinar cells, whereas the frequency of [Ca2+]i oscillations showed no difference between wild-type and Homer2-/- mice. Homer2-/- mice also showed a significant decrease in amylase release by carbachol in the parotid gland in a dose-dependent manner. These results suggest that Homer2 plays a critical role in maintaining [Ca2+]i concentration and secretion of saliva in mouse parotid gland acinar cells.

Regulation of the expression and function of TRPCs and Orai1 by Homer2 in mouse pancreatic acinar cells

  • Kang, Jung Yun;Kang, Namju;Yang, Yu-Mi
    • International Journal of Oral Biology
    • /
    • 제46권3호
    • /
    • pp.134-139
    • /
    • 2021
  • Under physiological conditions, calcium (Ca2+) regulates essential functions of polarized secretory cells by the stimulation of specific Ca2+ signaling mechanisms, such as increases in intracellular Ca2+ concentration ([Ca2+]i) via the store-operated Ca2+ entry (SOCE) and the receptor-operated Ca2+ entry (ROCE). Homer proteins are scaffold proteins that interact with G protein-coupled receptors, inositol 1,4,5-triphosphate (IP3) receptors, Orai1-stromal interaction molecule 1, and transient receptor potential canonical (TRPC) channels. However, their role in the Ca2+ signaling in exocrine cells remains unknown. In this study, we investigated the role of Homer2 in the Ca2+ signaling and regulatory channels to mediate SOCE and ROCE in pancreatic acinar cells. Deletion of Homer2 (Homer2-/-) markedly increased the expression of TRPC3, TRPC6, and Orai1 in pancreatic acinar cells, whereas these expressions showed no difference in whole brains of wild-type and Homer2-/- mice. Furthermore, the response of Ca2+ entry by carbachol also showed significant changes to the patterns regulated by specific blockers of SOCE and ROCE in pancreatic acinar cells of Homer2-/- mice. Thus, these results suggest that Homer2 plays a critical role in the regulatory action of the [Ca2+]i via SOCE and ROCE in mouse pancreatic acinar cells.

Immunohistochemical localization of PLC in rat brain after chronic ECS

  • Hey suk Ihm;You, Je-Kyung;Ryu, Jae-Ryun;Shin, Chan-Young;Ko, Kwang-Ho
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.197-197
    • /
    • 1998
  • Chronic electroconvulsive shock(ECS) was shown to Increase phosphatidylinositol-4,5-bisphosphate(PIP$_2$) breakdown and the activity of PLC with the accumulation of inositol-1,4,5-triphosphate(IP3). The purpose of the present study was to determine the effect of ECS on the expression of phospholipase C(PLC) isotypes in rat brain. Two groups of animals were prepared: sham and ECS treated groups. Rats in ECS treated groups received maximal ECS(70mA, 0.5second, 60㎐) by constant current stimulator through ear-clip to induce tonic extension seizures for 12 consecutive days. The expression of PLC isotypes in rat brain was determined by immunohistochemical procedure using sagital section of rat brain. The immunoreactivity of PLC${\beta}$1 was observed in corpus striatum, hippocampus, thalamus and that of PLC${\gamma}$1 in corpus striatum, hippocampus, thalamus, frontal cortex, parietooccipital cortex, limbic forebrain, pons, medulla, superior colliculus, inferior colliculus, rest of midbrain. The amount of PLC was analyzed by Western blot using antibodies against PLC${\beta}$1 and PLC${\gamma}$1. Chronic ECS reduced the immunoreactivity of PLC${\beta}$1 in corpus striatum, hippocampus, thalamus but had little effect on PLC${\gamma}$1. To quantify this change, quantitative Western blot using antibodies against PLC${\beta}$1 and PLC${\gamma}$1 was conducted. The immunoreactivity of PLC${\beta}$1 in ECS treated rat whole brain was decreased by 40 % in cytosolic fraction and 26 % in membrane fraction. This different effect of ECS on PLC isotypes may results from the difference of their activation mechanisms and the different effects of ECS on them. The results from the present study suggest that chronic ECS primalily affects neurotransmitter receptors related IP$_3$ signaling in rat brain.

  • PDF

생쥐 초기 2-세포 배에서 세포 내 칼슘 농도의 변화에 $Ni^{2+}$이 미치는 영향 (The effect of $Ni^{2+}$ on the intracellular $Ca^{2+}$ increase of the mouse early 2-cell embryos)

  • 윤숙영;이은미;배인하
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제30권4호
    • /
    • pp.269-280
    • /
    • 2003
  • Objective: We reported the overcoming effect of $Ni^{2+}$ on the in vitro 2-cell block of mouse embryos. In this study, we aim to investigate whether $Ni^{2+}$ should induce intracellular $Ca^{2+}$ transient in the mouse embryos. Materials and Methods: Embryos were collected at post hCG 32hr from the oviduct of the ICR mouse and cultured in M2 medium omitted phenol red. Intracellular $Ca^{2+}$ was checked by using a confocal laser scanning microscope and fluo-3AM by using various intracellular $Ca^{2+}$ antagonists. Results: In 1mM $Ni^{2+}$ treated medium which contained $Ca^{2+}$(1.71mM), 75.7% of the embryos showed $[Ca^{2+}]i$ transient about 200 sec later. In the $Ca^{2+}$-free medium, 69.8% of the embryos showed $[Ca^{2+}]i$ transient. In U73122, phospholipaseC(PLC) inhibitor (5uM, 10min) pretreated group, 33.3% of the embryos showed $[Ca^{2+}]i$ transient. Heparine, inositol 1, 4, 5-triphosphate receptor(IP3R) antagonist preinjected embryos showed no response with 1mM $Ni^{2+}$. In danthrolene treatment, ryanodine receptor(RyR)-antagonist, 43% embryos showed $[Ca^{2+}]i$ transient but they showed delayed response about 340sec in the presence of $Ca^{2+}$. Conclusions: Summing up the above results, $Ni^{2+}$ seems to induce $Ca^{2+}$-release from the $Ca^{2+}$-store even in the $Ca^{2+}$-free medium. IP3 receptors of the mouse 2-cell embryos might have an essential role for the intracellular $Ca^{2+}$ increase by $Ni^{2+}$.