• 제목/요약/키워드: Inositol triphosphate (IP3)

검색결과 36건 처리시간 0.026초

생쥐 초기 2-세포 배에서 세포 내 칼슘 농도의 변화에 $Ni^{2+}$이 미치는 영향 (The effect of $Ni^{2+}$ on the intracellular $Ca^{2+}$ increase of the mouse early 2-cell embryos)

  • 윤숙영;이은미;배인하
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제30권4호
    • /
    • pp.269-280
    • /
    • 2003
  • Objective: We reported the overcoming effect of $Ni^{2+}$ on the in vitro 2-cell block of mouse embryos. In this study, we aim to investigate whether $Ni^{2+}$ should induce intracellular $Ca^{2+}$ transient in the mouse embryos. Materials and Methods: Embryos were collected at post hCG 32hr from the oviduct of the ICR mouse and cultured in M2 medium omitted phenol red. Intracellular $Ca^{2+}$ was checked by using a confocal laser scanning microscope and fluo-3AM by using various intracellular $Ca^{2+}$ antagonists. Results: In 1mM $Ni^{2+}$ treated medium which contained $Ca^{2+}$(1.71mM), 75.7% of the embryos showed $[Ca^{2+}]i$ transient about 200 sec later. In the $Ca^{2+}$-free medium, 69.8% of the embryos showed $[Ca^{2+}]i$ transient. In U73122, phospholipaseC(PLC) inhibitor (5uM, 10min) pretreated group, 33.3% of the embryos showed $[Ca^{2+}]i$ transient. Heparine, inositol 1, 4, 5-triphosphate receptor(IP3R) antagonist preinjected embryos showed no response with 1mM $Ni^{2+}$. In danthrolene treatment, ryanodine receptor(RyR)-antagonist, 43% embryos showed $[Ca^{2+}]i$ transient but they showed delayed response about 340sec in the presence of $Ca^{2+}$. Conclusions: Summing up the above results, $Ni^{2+}$ seems to induce $Ca^{2+}$-release from the $Ca^{2+}$-store even in the $Ca^{2+}$-free medium. IP3 receptors of the mouse 2-cell embryos might have an essential role for the intracellular $Ca^{2+}$ increase by $Ni^{2+}$.

G-Protein-Coupled Receptor 120 Mediates DHA-Induced Apoptosis by Regulating IP3R, ROS and, ER Stress Levels in Cisplatin-Resistant Cancer Cells

  • Shin, Jong-Il;Jeon, Yong-Joon;Lee, Sol;Lee, Yoon Gyeong;Kim, Ji Beom;Lee, Kyungho
    • Molecules and Cells
    • /
    • 제42권3호
    • /
    • pp.252-261
    • /
    • 2019
  • The omega-3 fatty acid docosahexaenoic acid (DHA) is known to induce apoptosis and cell cycle arrest via the induction of reactive oxygen species (ROS) production and endoplasmic reticulum (ER) stress in many types of cancers. However, the roles of DHA in drug-resistant cancer cells have not been elucidated. In this study, we investigated the effects of DHA in cisplatin-resistant gastric cancer SNU-601/cis2 cells. DHA was found to induce ROS-dependent apoptosis in these cells. The inositol 1,4,5-triphosphate receptor ($IP_3R$) blocker 2-aminoethyl diphenylboninate (2-APB) reduced DHA-induced ROS production, consequently reducing apoptosis. We also found that G-protein-coupled receptor 120 (GPR120), a receptor of long-chain fatty acids, is expressed in SNU-601/cis2 cells, and the knockdown of GPR120 using specific shRNAs alleviated DHA-mediated ROS production and apoptosis. GPR120 knockdown reduced the expression of ER stress response genes, similar to the case for the pre-treatment of the cells with N-acetyl-L-cysteine (NAC), an ROS scavenger, or 2-APB. Indeed, the knockdown of C/EBP homologous protein (CHOP), a transcription factor that functions under ER stress conditions, markedly reduced DHA-mediated apoptosis, indicating that CHOP plays an essential role in the anti-cancer activity of DHA. These results suggest that GPR120 mediates DHA-induced apoptosis by regulating $IP_3R$, ROS, and ER stress levels in cisplatin-resistant cancer cells, and that GPR120 is an effective chemotherapeutic target for cisplatin resistance.

Mechanisms of tert-Buthyl Hydroperoxide-induced Membrane Depolarization in Rat Spinal Substantia Gelatinosa Neurons

  • Lim, Seong-Jun;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • 제33권3호
    • /
    • pp.117-123
    • /
    • 2008
  • Reactive oxygen species (ROS) are toxic agents that may be involved in various neurodegenerative diseases. Recent studies indicate that ROS can act as modulators of neuronal activity, and are critically involved in persistent pain primarily through spinal mechanisms. In the present study, whole cell patch clamp recordings were carried out to investigate the effects of tert-buthyl hydroperoxide (t-BuOOH), an ROS, on neuronal excitability and the mechanisms underlying changes of membrane excitability. In current clamp condition, application of t-BuOOH caused a reversible membrane depolarization and firing activity in substantia gelatinosa (SG) neurons. When slices were pretreated with phenyl-N-tert-buthylnitrone (PBN) and ascorbate, ROS scavengers, t-BuOOH failed to induce membrane depolarization. However, isoascorbate did not prevent t-BuOOH-induced depolarization, suggesting that the site of ROS action is intracellular. The t-BuOOH-induced depolarization was not blocked by pretreatment with dithiothreitol (DTT), a sulfhydryl-reducing agent. The membrane-impermeant thiol oxidant 5,5-dithiobis 2-nitrobenzoic acid (DTNB) failed to induce membrane depolarization, suggesting that the changes of neuronal excitability by t-BuOOH are not caused by the modification of extrathiol group. The t-BuOOH-induced depolarization was suppressed by the phospholipase C (PLC) blocker U-73122 and inositol triphosphate ($IP_3$) receptor antagonist 2-aminoethoxydiphenylbolate (APB), and after depletion of intracellular $Ca^{2+}$ pool by thapsigargin. These data suggest that ROS generated by peripheral nerve injury can induce central sensitization in spinal cord, and t-BuOOH-induced depolarization may be regulated by intracellular $Ca^{2+}$ store mainly via $PLC-IP_3$ pathway.

$K^{+}$ 통로 개방제의 혈관근 이완작용에 대한 연구 : sarcoplasmic Reticulum에서의 $Ca^{++}$ 유리에 대한 효과

  • 임병용;홍선화;홍기환
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.288-288
    • /
    • 1994
  • 1.목적 $K^{+}$ 통로 개방제인 cromakalim과 levcromakalim이 원형질막의 $K^{+}$ 통로를 개방시켜 막의 과분극을 일으킴으로서 강력한 혈관 이완작용을 일으킨다는 것은 주지하는 바다. 본 연구진들은 지난 2년간의 신약개발 연구사업을 통하여 cromakalim과 pinacidil 등 여러종의 K+통로개방제가 건전한 평활근 세포에서 phenylephrine뿐만 아니라 saponin처리에 의한 투과성 근세포 (permeabilized cells)에서 inositol 1,4,5-triphosphate (IP$_3$)에 의한 수축도 억제함을 보고 하였다. 본 연구에서는 이러한 수축작용에 대한 SPEX fluolog-2 spectrophotometer를 사용하여 돼지의 관상동맥 혈관근의 세포질내 $Ca^{++}$의 농도 ([$Ca^{++}$])의 변동을 관찰하였다. 정상 관상동맥 혈관근 조직에서 acetylcholine (0.1-1$\mu$M)에 의한 [Ca$^{++}$]농도의 증가와 b-escin 처리에 의한 skinned strip에서의 IP3 (1-5$\mu$M)에 의한 [Ca$^{2+}$]의 증가는 cromakalim과 levcromakalim의 전처치에 의하여 현저히 억제되었다. Skinned strip에서 이러한 K+ 통로 개방제에 의한 $IP_3$-요도 ($Ca^{2+}$)i 증가의 억제가 apamin (1-5 mM)과 glibenclamide (1$\mu$M)에 의하여 봉쇄되었으나, chrybdotoxin (0.1$\mu$M)에 의하여는 영향을 받지 아니하였다 한편 skinned strip에서 cromakalim은 GTP${\gamma}$s에 의한 [$Ca^{2+}$]i의 증가는 봉쇄하였으나 caffeine에 의한 [$Ca^{2+}$]i의 증가는 영향을 미치지 아니하였다. 이러한 연구결과로 보아 cromakalim과 levcromakalim과 같은 $K^{+}$ 통로 개방제가 세포막의 $K^{+}$ 통로를 개방하는 작용 뿐만 아니라 적어도 sarcoplasmic membrane에서 $Ca^{2+}$의 유리를 봉쇄함으로써 강력한 혈관 평활근 이완 작용을 나타내는 것으로 시사된다.

  • PDF

Homer2 regulates amylase secretion via physiological calcium oscillations in mouse parotid gland acinar cells

  • Kang, Namju;Kang, Jung Yun;Shin, Dong Min;Yang, Yu-Mi
    • International Journal of Oral Biology
    • /
    • 제45권2호
    • /
    • pp.58-63
    • /
    • 2020
  • The salivary glands secrete saliva, which plays a role in the maintenance of a healthy oral environment. Under physiological conditions, saliva secretion within the acinar cells of the gland is regulated by stimulation of specific calcium (Ca2+) signaling mechanisms such as increases in the intracellular Ca2+ concentration ([Ca2+]i) via storeoperated Ca2+ entry, which involves components such as Orai1, transient receptor potential (TRP) canonical 1, stromal interaction molecules, and inositol 1,4,5-triphosphate (IP3) receptors (IP3Rs). Homer proteins are scaffold proteins that bind to G protein-coupled receptors, IP3Rs, ryanodine receptors, and TRP channels. However, their exact role in Ca2+ signaling in the salivary glands remains unknown. In the present study, we investigated the role of Homer2 in Ca2+ signaling and saliva secretion in parotid gland acinar cells under physiological conditions. Deletion of Homer2 (Homer2-/-) markedly decreased the amplitude of [Ca2+]i oscillations via the stimulation of carbachol, which is physiologically concentrated in parotid acinar cells, whereas the frequency of [Ca2+]i oscillations showed no difference between wild-type and Homer2-/- mice. Homer2-/- mice also showed a significant decrease in amylase release by carbachol in the parotid gland in a dose-dependent manner. These results suggest that Homer2 plays a critical role in maintaining [Ca2+]i concentration and secretion of saliva in mouse parotid gland acinar cells.

The Mechanism of Action of Ghrelin and Motilin in the Pacemaker Potentials of Interstitial Cells of Cajal from the Murine Small Intestine

  • Kim, Jeong Nam;Kim, Byung Joo
    • Molecules and Cells
    • /
    • 제42권6호
    • /
    • pp.470-479
    • /
    • 2019
  • Interstitial cells of Cajal (ICCs) are pacemaker cells that exhibit periodic spontaneous depolarization in the gastrointestinal (GI) tract and generate pacemaker potentials. In this study, we investigated the effects of ghrelin and motilin on the pacemaker potentials of ICCs isolated from the mouse small intestine. Using the whole-cell patch-clamp configuration, we demonstrated that ghrelin depolarized pacemaker potentials of cultured ICCs in a dose-dependent manner. The ghrelin receptor antagonist [D-Lys] GHRP-6 completely inhibited this ghrelin-induced depolarization. Intracellular guanosine 5'-diphosphate-${\beta}$-S and pre-treatment with $Ca^{2+}$-free solution or thapsigargin also blocked the ghrelin-induced depolarization. To investigate the involvement of inositol triphosphate ($IP_3$), Rho kinase, and protein kinase C (PKC) in ghrelin-mediated pacemaker potential depolarization of ICCs, we used the $IP_3$ receptor inhibitors 2-aminoethoxydiphenyl borate and xestospongin C, the Rho kinase inhibitor Y-27632, and the PKC inhibitors staurosporine, Go6976, and rottlerin. All inhibitors except rottlerin blocked the ghrelin-induced pacemaker potential depolarization of ICCs. In addition, motilin depolarized the pacemaker potentials of ICCs in a similar dose-dependent manner as ghrelin, and this was also completely inhibited by [D-Lys] GHRP-6. These results suggest that ghrelin induced the pacemaker potential depolarization through the ghrelin receptor in a G protein-, $IP_3$-, Rho kinase-, and PKC-dependent manner via intracellular and extracellular $Ca^{2+}$ regulation. In addition, motilin was able to depolarize the pacemaker potentials of ICCs through the ghrelin receptor. Therefore, ghrelin and its receptor may modulate GI motility by acting on ICCs in the murine small intestine.

Inhibitory effects of total saponin from Korean Red Ginseng on [Ca2+]i mobilization through phosphorylation of cyclic adenosine monophosphate-dependent protein kinase catalytic subunit and inositol 1,4,5-trisphosphate receptor type I in human platelets

  • Shin, Jung-Hae;Kwon, Hyuk-Woo;Cho, Hyun-Jeong;Rhee, Man Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • 제39권4호
    • /
    • pp.354-364
    • /
    • 2015
  • Background: Intracellular $Ca^{2+}$($[Ca^{2+}]_i$) is a platelet aggregation-inducing molecule. Therefore, understanding the inhibitory mechanism of $[Ca^{2+}]_i$mobilization is very important to evaluate the antiplatelet effect of a substance. This study was carried out to understand the $Ca^{2+}$-antagonistic effect of total saponin from Korean Red Ginseng (KRG-TS). Methods: We investigated the $Ca^{2+}$-antagonistic effect of KRG-TS on cyclic nucleotides-associated phosphorylation of inositol 1,4,5-trisphosphate receptor type I ($IP_3RI$) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) in thrombin (0.05 U/mL)-stimulated human platelet aggregation. Results: The inhibition of $[Ca^{2+}]_i$ mobilization by KRG-TS was increased by a PKA inhibitor (Rp-8-BrcAMPS), which was more stronger than the inhibition by a cyclic guanosine monophosphate (cGMP)- dependent protein kinase (PKG) inhibitor (Rp-8-Br-cGMPS). In addition, Rp-8-Br-cAMPS inhibited phosphorylation of PKA catalytic subunit (PKAc) ($Thr^{197}$) by KRG-TS. The phosphorylation of $IP_3RI$ ($Ser^{1756}$) by KRG-TS was very strongly inhibited by Rp-8-Br-cAMPS compared with that by Rp-8-BrcGMPS. These results suggest that the inhibitory effect of $[Ca^{2+}]_i$ mobilization by KRG-TS is more strongly dependent on a cAMP/PKA pathway than a cGMP/PKG pathway. KRG-TS also inhibited the release of adenosine triphosphate and serotonin. In addition, only G-Rg3 of protopanaxadiol in KRG-TS inhibited thrombin-induced platelet aggregation. Conclusion: These results strongly indicate that KRG-TS is a potent beneficial compound that inhibits $[Ca^{2+}]_i$ mobilization in thrombin-platelet interactions, which may result in the prevention of platelet aggregation-mediated thrombotic disease.

Glycoportein IIb/IIIa와 칼슘동원의 조절을 통한 Steppogenin의 혈소판활성 억제효과 (Inhibitory Actions of Steppogenin on Platelet Activity Through Regulation of Glycoprotein IIb/IIIa and Ca2+ Mobilization)

  • 신정해;하주연;권혁우
    • 생약학회지
    • /
    • 제51권2호
    • /
    • pp.100-106
    • /
    • 2020
  • The extract of Cudrania tricuspidata is used in ethnomedicine throughout Eastern Asia in China, Korea and Japan. In Korean traditional medicine, Cudrania tricuspidata has been used to treat eczema, mumps, tuberculosis, contusions, insomnia and acute arthritis. In addition, it has been reported that root extract of Cudrania tricuspidata has anti-platelet effects. Therefore, we investigated which compound in Cudrania tricuspidata has inhibitory effect on platelet aggregation. In this study, we tried to explain the inhibitory mechanism of steppogenin from Cudrania tricuspidata on human platelet aggregation. Collagen-induced human platelet aggregation and [Ca2+]i mobilization were dose-dependently inhibited by steppogenin and we determined the inhibition by steppogenin is due to the down regulation of extracellular-signal-regulated kinase(ERK) and inositol-1,4,5-triphosphate receptor type I(IP3RI) phosphorylation. In addition, steppogenin inhibited collagen-induced fibronectin adhesion to αIIb/β3 and thromboxane A2 generation. Thus, in the present study, steppogenin showed an inhibitory effect on human platelet aggregation, suggesting its potential use for preventing platelet-induced cardiovascular disease.

고양이의 담낭근 수축에 있어서 세포내 기전 (Cellular Pathways in Agonist-induced Gallbladder Muscle Contraction in the Cat)

  • 임병용;김치대;김동헌
    • 대한약리학회지
    • /
    • 제32권1호
    • /
    • pp.67-74
    • /
    • 1996
  • 고양이 담낭근에서 효소학적으로 분리한 평활근 세포는 cholecystokinin octapeptide (CCK-8), acetylcholine (ACh) 및 KCl에 의하여 용량에 의존하여 수축하였다. 이들 효현제 (CCK-5, ACh 및 KCl)에 의한 평활근 세포의 최대수축은 각각$10^{-9}M$, $10^{-5}M$ 및 20mM 농도에서 야기되었다. CCK-8에 의하여 야기되는 이들 평활근 세포의 수축은 HEPES 완충액에 $Ca^{2+}$을 제거시킴에 의하여 영향을 받지 아니하였으나, $Ca^{2+}$ 대신에 strontium을 첨가시켰을때 수축반응이 완전하게 억제되었다 (p<0.001). 이와는 반대로 KCl에 의한 수축반응은 strontium 치환에 의하여 영향을 받지 아니하고 HEPES 완충액에 $Ca^{2+}$을 제거시킴에 의하여 억제되었다 (p<0.01). ACh에 의하여 야기되는 수축반응은 세포 외액의 $Ca^{2+}$을 제거시킴에 의하여 중등도의 억제반응이 야기되었으나 (p<0.05) strontium에 의하여 영향을 받지 아니하였다. Saponin으로 세포 투과성 변동을 야기시킨 근세포에서 inositol 1,4,5-trisphosphate $(IP_3)$와 CCK-8은 수축반응을 일으켰고, 이러한 수축반응은 calmodulin 길항제인 CGS 9343B에 의하여 차단되었으며 (p<0.001), heparin은 CCK-8 및 $IP_3$의 작용을 완전하게 봉쇄하였다 (p<0.001). 그러나 이러한 수축반응에 있어서 protein kinase C 길항제인 H7은 아무런 작용을 나타내지 못하였다. 이러한 결과로 볼 때 CCK-8에 의하여 야기된 고양이 담낭근 세포의 수축반응은 $IP_3$에 의하여 세포내 저장소로부터 유리된 $Ca^{2+}$과 calmodulin에 의존적인 과정에 의하여 매개되어 지는 것으로 생각된다. 또한 ACh는 세포외액의 $Ca^{2+}$ 뿐만 아니라 세포내 저장소의 $Ca^{2+}$ 모두를 이용하며, KCl은 전적으로 세포외액의 $Ca^{2+}$에 의존적인 형태로 calmodulin과는 무관하게 고양이 담낭근 세포의 수축반응을 야기시키는 것으로 사료된다.

  • PDF

Immunohistochemical localization of PLC in rat brain after chronic ECS

  • Hey suk Ihm;You, Je-Kyung;Ryu, Jae-Ryun;Shin, Chan-Young;Ko, Kwang-Ho
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.197-197
    • /
    • 1998
  • Chronic electroconvulsive shock(ECS) was shown to Increase phosphatidylinositol-4,5-bisphosphate(PIP$_2$) breakdown and the activity of PLC with the accumulation of inositol-1,4,5-triphosphate(IP3). The purpose of the present study was to determine the effect of ECS on the expression of phospholipase C(PLC) isotypes in rat brain. Two groups of animals were prepared: sham and ECS treated groups. Rats in ECS treated groups received maximal ECS(70mA, 0.5second, 60㎐) by constant current stimulator through ear-clip to induce tonic extension seizures for 12 consecutive days. The expression of PLC isotypes in rat brain was determined by immunohistochemical procedure using sagital section of rat brain. The immunoreactivity of PLC${\beta}$1 was observed in corpus striatum, hippocampus, thalamus and that of PLC${\gamma}$1 in corpus striatum, hippocampus, thalamus, frontal cortex, parietooccipital cortex, limbic forebrain, pons, medulla, superior colliculus, inferior colliculus, rest of midbrain. The amount of PLC was analyzed by Western blot using antibodies against PLC${\beta}$1 and PLC${\gamma}$1. Chronic ECS reduced the immunoreactivity of PLC${\beta}$1 in corpus striatum, hippocampus, thalamus but had little effect on PLC${\gamma}$1. To quantify this change, quantitative Western blot using antibodies against PLC${\beta}$1 and PLC${\gamma}$1 was conducted. The immunoreactivity of PLC${\beta}$1 in ECS treated rat whole brain was decreased by 40 % in cytosolic fraction and 26 % in membrane fraction. This different effect of ECS on PLC isotypes may results from the difference of their activation mechanisms and the different effects of ECS on them. The results from the present study suggest that chronic ECS primalily affects neurotransmitter receptors related IP$_3$ signaling in rat brain.

  • PDF