• Title/Summary/Keyword: Inorganic particle

Search Result 303, Processing Time 0.025 seconds

Tribological Properties of Reaction-Bonded SiC/Graphite Composite According to Particle Size of Graphite (반응소결 SiC/Graphite 복합체에서 Graphite 입자의 크기에 따른 마찰마모특성)

  • Baik, Yong-Hyuck;Seo, Young-Hean;Choi, Woong;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.854-860
    • /
    • 1997
  • The tribological property of ceramics is very important for use in seal rings, pump parts, thread guides and mechanical seal, etc. In the present study, which RBSC/graphite composites were manufactured by adding graphite powders with different particle sizes to mixtures of SiC powder, metallic silicon, carbon black and alumina, effects on the tribological property of each RBSC/graphite composite was investigated in accordance with the particle size of the added graphite powder. The water absorption, the bending strength and the resistance for the friction and wear were measured, and the crystalline phase and the microstructure were respectively examined by using XRD and SEM. In case that the particle size of the graphite powder was fine(2${\mu}{\textrm}{m}$), the formation of $\beta$-SiC was accelerated, thereby making the increase of the bending strength and the decrease of the water absorption, but no improvement for the tribological properties. Furthermore, in case that the particle size of the graphite powder was some large(88~149${\mu}{\textrm}{m}$), the formation of $\beta$-SiC was not accelerated, to thereby make the decrease of the bending strength and the increase of the water absorption, but the improvement for the tribological property of only the composite having the graphite powder of 20 vol%. In addition, in case that the particle size distribution of the graphite powder was large (under 53 ${\mu}{\textrm}{m}$), there was no improvement for every properties. However, the composites, which the graphite powder with the particle size of 53~88 ${\mu}{\textrm}{m}$ was added in 10~15 vol%, had the most increased resistance for the friction and wear which show the worn out amount of 0.4~0.6$\times$10-3 $\textrm{cm}^2$, and the value of the bending strength is 380~520 kg/$\textrm{cm}^2$.

  • PDF

Estimation of Optimum PM2.5 Ionic Concentration Control Strategy for Reducing Fine Particle Mass Concentrations in Seoul (서울시 초미세먼지 질량농도 저감을 위한 입자 내 이온성분 최적감축방법 예측)

  • Kim, Jung Youn;Lee, Ji Won;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.6 no.4
    • /
    • pp.151-164
    • /
    • 2010
  • Inorganic ions and water are major components of ambient fine particles. Water content in fine particles is mainly determined by ambient meteorological conditions and the concentrations of hygroscopic species such as inorganic ions. Thus, to reduce fine particle mass concentration, it is important to accurately estimate the relationship between water content and the concentration of ions in fine particles. Water content in fine particles in Seoul are estimated by using a gas/particle equilibrium model to understand the characteristics of fine particle mass concentration. In addition, sensitivity of fine particle mass concentration to the changes of particulate ionic species (sulfate, nitrate, and ammonium) is estimated. It was found that water content in Seoul is mostly determined by the concentrations of the hygroscopic ionic species, especially, sulfate and ammonium, and ambient relative humidity.

Tribology of Clay Bonded Silicon Carbide

  • Lee, Kyunghee;Kim, Honggi
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.226-230
    • /
    • 1996
  • A small amount of fine particle graphite was added to $\alpha$-SiC and $\beta$-SiC having certain particle distributions, and they were mixed clay and frit. After forming, they were sintered at 140$0^{\circ}C$ for 3 hours. Tribological properties of sintered $\alpha$-SiC-$\beta$-SiC-graphite-clay (frit) system showed that kinetic friction coefficient was 0.108, specific wear rate was 1.3${\times}10^-8\;mm^2$.$kgf^1$, and torque was 0.01kgf.cm at the wrench torque of 100 kgf.cm.

  • PDF

Film Coating and Micro - Pattering Process of Nano-particle Conductive Ink System by Using ESD Method

  • Yang, Jong-Won;Jo, Sang-Hyeon;Sin, Na-Ri;Kim, Jin-Yeol
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.238.1-238.1
    • /
    • 2011
  • 본 연구에서는 non-contact deposition method의 일환인 ESD (electroctatic deposition)의 박막공정을 이용하여 Conductive layer 위에 Gold nanoparticles 및 Silver nanoparticles 등 organic/inorganic nano particle conductive ink system의 단분산 2D 박막을 제조를 연구하였다. ESD head를 통해 여러가지 organic / inorganic nano particle conductive ink system을 Deposition하였으며 분산도가 높고 균일한 단분산의 2차원 박막 구조를 얻을 수 있었으며, 전도성 PEDOT과의 Hybridization을 통해 균일상의 표면 Morphology를 갖는 고 전도성 투명 필름을 제작하였다. ESD technique를 이용하는 박막공정 기술은 나노입자 및 나노구조물의 박막화 패턴화를 포함하는 새로운 Deposition 기술로써 이를 응용하여 금속 나노입자의 2차원의 패턴화된 박막 구현을 통해 유기반도체 및 전자소자에의 응용성을 증거할 수 있었다.

  • PDF

Controlling the Porosity of Particle Stabilized Al2O3 Based Ceramics

  • Pokhrel, Ashish;Park, Jung-Gyu;Jho, Gae-Hyong;Kim, Jin-Young;Kim, Ik-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.600-603
    • /
    • 2011
  • The microstructure of particle stabilized wet foams can be tailored by using parameters including the amphiphile concentration, contact angle, and surface tension. The influence of these parameters on the porosity is satisfactorily described in terms of a combined influence of the contact angle and surface tension of the initial suspensions that are directly affected by the amphiphile concentration. The resulting macroporous structures exhibited a total porosity of 82%. The foam cells were predominantly closed due to the air bubbles of the original wet foams being completely covered.

Effects of Inorganic Fillers on Mechanical Properties of Silicone Rubber

  • Kim, Gyu Tae;Lee, Young Seok;Ha, KiRyong
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.142-148
    • /
    • 2019
  • In this study, the effects of filler particle size and shape on the physical properties of silicone rubber composites were investigated using inorganic fillers (Minusil 5, Celite 219, and Nyad 400) except silica, which was already present as a reinforcing filler of silicone rubber. Fillers with small particle sizes are known to facilitate the formation of the bound rubber by increasing the contact area with the polymer. However, in this experiment, the bound rubber content of Celite 219-added silicone composite was higher than that of Minusil 5-added silicone composite. This was attributed to the porous structure of Celite 219, which led to an increase in the internal surface area of the filler. When the inorganic fillers were added, both thermal decomposition temperature and thermal stability were improved. The bound rubber formed between the silicone rubber and inorganic filler affected the degree of crosslinking of the silicone composite. It is well-known that as the size of the reinforcing filler decreases, the reinforcing effect increases. However, in this experiment, the hardness of the composite material filled with Celite 219 was the highest compared to the other three composites. Furthermore, the highest value of 2.19 MPa was observed for 100% modulus, and the fracture elongation was the lowest at 469%. This was a result of excellent interaction between Celite 219 filler and silicone rubber.

Study on the Application of Inorganic Byproduct from Fertilizer Manufacture Process as an Alternative Filler (폐기 무기 부산물의 제지용 충전제로의 활용성 평가 연구)

  • Lee, Ji-Young;Lee, Eun-Kyu;Lee, Do-Yeob;Yun, Kyeong-Tae;Sung, Yong-Joo;Choi, Jae-Sung;Kim, Da-Mi;Kim, Beong-Ho;Lim, Gi-Baek
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.1
    • /
    • pp.52-57
    • /
    • 2012
  • In this study, we investigated the possible use of a new inorganic material as alternative filler in the paper industry. The inorganic material is a mineral composed of calcium sulfate, that is generated when manufacturing phosphate fertilizer. The inorganic material was dehydrated by the thermal treatment to $200^{\circ}C$, $500^{\circ}C$, $700^{\circ}C$, and $900^{\circ}C$ to prepare white filler powders. Their basic properties, including color, particle shape, elements, and average particle size were identified. To determine the effect of new inorganic filler on paper's physical properties and strength, handsheets were prepared from HwBKP, SwBKP, and thermal treated inorganic fillers. Handsheets' ISO brightness, opacity, bulk, breaking length, and stiffness were measured. Results confirmed that thermal treated inorganic filler could be beneficial to the bulk and opacity of paper while maintaining higher level of breaking length and stiffness that is achieved using talc.

Effects of Dual-Coagulant Performance (이중응집이 응집공정에 미치는 영향)

  • Kim, Hee-Geun;Moon, Byung-Hyun;Kim, Seung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.92-97
    • /
    • 2005
  • This research is to investigate the effect of the dual coagulant using inorganic coagulants($AICl3{\cdot}6H2O$) and polymer on the coagulant process. Jar-test was conducted by using Kaolin injected raw water. PDA(Photometric Dispersion Analyzer) equipment in order to analyze the size of the particles and the characteristics of the shapes. The change in the rate of sample ores' residual deposited after coagulants were also compared. According to the result derived from this experiment, the concentration of inorganic coagulant reduced 50% and the residual was lower by using dual coagulants compared to using single coagulant. However the dual coagulant required sufficient mixing time, and affected particle characteristics, with the effect of the injection order of coagulants, the simultaneous injection of inorganic coagulant and polymer showed the most effective in the particle removal.

Particle Growth in Oxalate Process I

  • Park, Zee-Hoon;Shin, Hyo-Soon;Lee, Byung-Kyo
    • The Korean Journal of Ceramics
    • /
    • v.2 no.2
    • /
    • pp.63-69
    • /
    • 1996
  • Barium titanyl oxalates, strontium titanyl oxalates and calcium zirconyl oxalates were prepared with variation of solution concentration and method of adding mixed metal ion solution into oxalic acid. Then they were aged in distilled water, ethanol or methanol, respectively. Barium titanyl oxalates and calcium zironyl oxalates were grown in water and strontium titanyl oxalates were groun in both water and methanol. They were supposed to be grown through the solutionl and reprecipitation mechanism. Nonuniform dispersion of particles in liquid phase is thought to cause abnormal particle growth.

  • PDF

Dispersion Control and Characterization of the SiO2/PMMA Particles Using Surface Charge (표면전하를 이용한 SiO2/PMMA 분말의 분산 제어 및 평가)

  • Kang, Yubin;Son, Soojung;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.403-407
    • /
    • 2015
  • Poly-methylmetacrylate (PMMA) is mainly applied in the plastic manufacturing industry, but PMMA is weak and gradually got discolor. The strength of PMMA can be improved through organic-inorganic hybrid nano composites with inorganic nano particles such as, $SiO_2$ or ZrO. However, inorganic nano particles are mostly agglomerated spontaneously. In this study, the zeta potential is controlled using different types of organic solvent with different concentrations, dispersibillity of $SiO_2$ nano particles on the PMMA particle are analyzed. When 3 M acetic acid is used, absolute value of the zeta potential is higher, $SiO_2$ nano particle is well attached, and dispersed on the PMMA particle surface. Results indicate that the absolute value of the zeta potential affects the stability of $SiO_2$ dispersion.