• Title/Summary/Keyword: Inorganic nutrient distribution

Search Result 35, Processing Time 0.021 seconds

Long-Term Trend of Picophytoplankton Contribution to the Phytoplankton Community in the East Sea (동해 식물플랑크톤 군집에 대한 초미소 식물플랑크톤(< 2 ㎛) 기여도 장기 경향성 연구)

  • Hyo Keun Jang;Dabin Lee;Sang Heon Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.525-535
    • /
    • 2023
  • In thi study, we unveil the intricate interplay among picophytoplankton (0.2-2 ㎛) communities, warming surface water temperatures, and major inorganic nutrients within the southwestern East Sea from 2003-2022. The observed surface temperature rise, reflecting global climate trends, defies conventional seasonal patterns in temperate seas, with highest temperatures in summer and lowest in spring. Concurrently, concentrations of major dissolved inorganic nutrient display distinct seasonality, with peaks in winter and gradually declining thereafter during spring. The time course of chlorophyll-a concentrations, a proxy for phytoplankton biomass, reveals a typical bimodal pattern for temperate seas. Notably, contributions from picophytoplankton exhibited a steady annual increase of approximately 0.5% over the study period, although the total chlorophyll-a concentrations declined slightly. The strong correlations between picophytoplankton contributions and inorganic nutrient concentrations is noteworthy, highlighting their competitively advantageous responsiveness to the shifting nutrient regime. These findings reflect significant ecological implications for the scientific insights into the marine ecosystem responses to changing climate conditions.

On the Spatio-temporal Distributions of Nutrients and Chlorophyll a Concentration, and the Environmental Factors on the Variation of Phytoplankton Biomass in the Shiahae, Southwestern Part of Korean Peninsula (시아해의 수질환경과 식물플랑크톤 생물량의 시ㆍ공간적 분포특성과 기초생물량변동에 영향을 미치는 환경특성)

  • 윤양호
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.1
    • /
    • pp.77-93
    • /
    • 2000
  • Field survey on the spatio-temporal distribution of water quality and chlorophyll a concentration, and the environmental factors on the variation of phytoplankton biomass were carried out at the 23 stations for four seasons in the Shiahae, southwestern coast of Korean Peninsula from February to October in 1995. I made an analysis on biological factor as chlorophyll a concentration as well as environmental factors such as water temperature, salinity and nutrients; ammonia, nitrite, nitrate, dissolved inorganic nitrogen, phosphate, N/P ratio, silicate and Si/P ratio. The waters in the Shiahae were not stratified due to the tidal mixing and high velocity of tidal current. And the high productivity in photic layer were supported by high nutrients concentration from freshwater on lands and bottom waters The low depth of transparency in the Shiahae had a bad influence upon primary production and marine biology. In Shiahae had a sufficient nutrients for primary production during a year. Especially dissolved inorganic nitrogen and silicate were high, the other side, phosphate was low. The source of nutrients in summer and silicate supply depend on input of freshwater from lands, the other side, dissolved inorganic nitrogen and phosphate were depend on rather supplied from bottom layer by the mixing and input of seawater from outside than input of freshwater from lands. Phosphate seemed to become a limiting nutrient for the primary production at all area of Shiahae in winter and at the northern parts in other seasons. However, dissolved inorganic nitrogen seemed to do it at the southern parts in other seasons except winter. Silicate didn't become a limiting nutrient for diatoms in Shiahae. Phytoplankton biomass as measured by chlorophyll a concentration was very high all the year round, it was controlled by the combination of the several environmental factors, especially of nitrogen, phosphorus and the physical factors such as light intensity. [Spatio-temporal distribution, Seasonal fluctuation, Nnutrients, Chlorophyll a, Environmental factors, Nutrient source, Limiting Nutrient, Light, Shiahae] .

  • PDF

Ecological Modeling for Estimation of Environmental Characteristics in Masan Bay

  • Kim, Dong-Myung
    • Journal of Environmental Science International
    • /
    • v.12 no.8
    • /
    • pp.841-846
    • /
    • 2003
  • The ecosystem model was applied to estimate the regional distribution of the net production(or consumption) of phytoplankton and the net uptake(or regeneration) rate of nutrients in Masan Bay for scenario analysis to find a proper management plan. At the surface level, net production of phytoplankton is 200 mgC/㎡/day at the entrance of the bay, and 400∼1000 mgC/㎡/day at the center of the bay. The inner area of the bay showed more than 2000 mgC/㎡/day. All areas of the bottom level have a net consumption, with the center of the bottom level showing more than 600 mgC/㎡/day. For dissolved inorganic nitrogen, the results showed a net uptake rate of 100∼900 mg/㎡/day at the surface level. It showed that the net regeneration is above 50 mg/㎡/day at the bottom level. For dissolved inorganic phosphorus, the net uptake rate showed 10.0∼80.0 mg/㎡/day at the surface level, and the regeneration rate showed 0∼20.5 mg/㎡/day at the bottom level. Therefore, in order to control the water quality in Masan Bay, it is important to consider the re-supplement of nutrients regenerated in the water column.

Spatial and Temporal Distribution of Inorganic Nutrients and Factors Controlling Their Distributions in Gwangyang Bay (광양만에서 무기 영양염의 시공간적 분포를 조절하는 요인)

  • Jang, Pung-Guk;Lee, Won-Je;Jang, Min-Chul;Lee, Jae-Do;Lee, Woo-Jin;Chang, Man;Hwang, Keun-Choon;Shin, Kyoung-Soon
    • Ocean and Polar Research
    • /
    • v.27 no.4
    • /
    • pp.359-379
    • /
    • 2005
  • In order to understand the spatial and temporal variations of nutrients and factors controlling their distribution in Gwangyang Bay, this study was carried out bimonthly from June 2001 to July 2003, Inorganic silicate and nitrate concentrations ranged from $0.04{\mu}M\;to\;69.5{\mu}M(avg.\;12.9{\mu}M)$, and from $0.12{\mu}M\;to\;42.2{\mu}M\;(avg.\;7.83{\mu}M)$, respectively. Silicate concentrations measured just after the typhoon were the highest with an average of $43.2{\mu}M$ at the surface layer in June 2001, whereas the highest nitrate concentration $(avg.\;37.0{\mu}M)$ was observed in the surface layer in July 2003. River runoff apparently influenced variations in silicate and nitrate concentrations (r=0.701 and 0.728, p<0.000, respectively) as well as salinity (r=-0.628, p<0.000). Phosphate concentrations ranged from $0.24{\mu}M\;to\;5.70{\mu}M\;(avg.\;1.34{\mu}M)$ and were highest at stations 5, 6, and 7, near a fertilizer plant with an average of $2.01{\mu}M$. On the basis of N/P and Si/N molar ratios, limiting nutrients have varied temporary and spatially. During 2001-2002, nitrogen was a limiting nutrient in the study area, and Phosphate was limited when a large volume of freshwater flowed into the bay. Silicate was limited when the high standing crops of phytoplankton occurred in the whole study area throughout 2003, and in the inner bay in February and August 2002. During the study period, factors controlling the distribution of nutrients might be summarized as follows; 1) inflow of freshwater by heavy rain accompanied by typhoons and frequent rainfall in summer, showing high concentrations of silicate and nitrate, 2) release of high phosphate concentrations from the fertilizer plant located in the south of Moydo to adjacent stations, 3) release of nutrients from bottom sediment, 4) magnitude of occurrence of phytoplankton standing crops.

Plankton Community Composition Related to Marine Environmental Factors in Haengam Bay (행암만 해양환경요인과 플랑크톤 군집구조의 변동)

  • Kim, Jeong Bae;Hong, Sokjin;Lee, Won-Chan;Kim, Hyung Chul;Lee, Yong-Woo;Youn, Seok-Hyun;Cho, Yoonsik
    • Journal of Environmental Science International
    • /
    • v.23 no.12
    • /
    • pp.2015-2028
    • /
    • 2014
  • We analyzed with HPLC (High Performance Liquid Chromatography) analysis photosynthetic pigments and environmental factors, microscopic observations of the phytoplankton and zooplankton in the seawater every month from February 2009 to November 2010 in Haengam Bay. The level of dissolved inorganic nutrients was the highest between July and September, when freshwater influx was at its peak, whereas chlorophyll a levels were the highest in April and August. Also, phytoplankton pigment concentration increased when dissolved inorganic nutrients are carried into nearshore waters by rainfall runoff. Based on identification of phytoplankton and photosynthetic pigments results, diatoms were mainly dominant while dinoflagellate populations increased at July and August 2009, May 2010. The zooplankton communities are dominated in terms of Noctiluca scintillans. The contribution of Noctiluca scintillans in 2010 accounts for approximately 77.3% of the total zooplankton. Distribution patterns over time of zooplankton in the seasonal distribution of phytoplankton showed a different pattern.

Study on Growth Characteristics of Sargassum fulvellum in the Integrated Multi-trophic Aquaculture (IMTA) System

  • Kim, Young-Dae;Park, Mi-Seon;Min, Byung-Hwa;Jeong, Seong-Jae;Kim, Hyung-Chul;Yoo, Hyun-Il;Lee, Won-Chan;Choi, Jae-Suk
    • Journal of Environmental Science International
    • /
    • v.23 no.10
    • /
    • pp.1703-1718
    • /
    • 2014
  • An eco-friendly integrated multi-trophic aquaculture (IMTA) farming technique was developed with the goal of resolving eutrophication by excess feed and feces as fish-farming by-products. A variety of seaweed species were tried to remove inorganic nutrients produced by fish farming. However, there have been few trials to use Sargassum fulvellum in an IMTA system, a species with a relatively wide distribution across regions with various habitat conditions, great nutrient removal efficiency and importance for human food source and industrial purposes. In this regard, our study tried to examine feasibility of using S. fulvellum in an IMTA system by analyzing growth characteristics of the species in an IMTA system comprising of rockfish (Sebastes shlegeli), sea cucumber (Stichopus japonocus) and the tried S. fulvellum (October 2011 - November 2012). We also monitored environment conditions around the system including current speed, water temperature and inorganic nutrient level as they may affect growth of S. fulvellum. S. fulvellum in the IMTA system, which were $15.72{\pm}5.67mm$ long at the start of the experiment in October 2011, grew to a maximum of $1093{\pm}271.13mm$ by May 2012. In September, seaweed growth was reduced to a minimum of $280{\pm}70.43mm$ in length. Then, S. fulvellum began to grow again reaching $325{\pm}196.19mm$ by November 2012. Wet weight of the seaweed was $4.01{\pm}1.89g$ at the start of the experiment and reached a maximum of $109.26{\pm}34.23g$ in May. The weight gradually declined to a low of $15.12{\pm}8.40g$ in September 2012. Weight began to increase once more, rising to $39.27{\pm}21.69g$ by November. During the experiment, the average velocity at the surface and the bottom was 6.5 cm/s and 3.4 cm/s, respectively. The water temperature ranged $5.0-23.5^{\circ}C$, which was considered suitable for growing S. fulvellum. Results of the study indicated no significant differences in inorganic nutrients between pre- and post-IMTA installation. It was thus concluded that S. fulvellum can be a suitable seaweed species to be used in an IMTA system.

Effects of Dietary Selenium Supplementation on Growth Performance, Selenium Retention in Tissues and Nutrient Digestibility in Growing-finishing Pigs

  • Tian, J.Z.;Yun, M.S.;Ju, W.S.;Long, H.F.;Kim, J.H.;Kil, D.Y.;Chang, J.S.;Cho, S.B.;Kim, Y.Y.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.1
    • /
    • pp.55-60
    • /
    • 2006
  • This experiment was conducted to investigate the effects of selenium (Se) sources and levels on growth performance, nutrient digestibility and Se retention in growing-finishing pigs. A total of 56 crossbred pigs ([$Landrace{\times}Yorkshire$]${\times}$Large White) with average $28.5{\pm}0.2kg$ BW were allotted to 7 treatments on the basis of sex and weight in two replicates and four pigs per pen. A $2{\times}3$ factorial arrangement of treatments was used in a randomized complete block (RCB) design. Two sources of Se (selenite Se or Se-enriched yeast) were added at 0.1, 0.3 and 0.5 mg/kg to each treatment diet. A basal diet without Se supplementation was the seventh treatment group. Three pigs per treatment were randomly selected and samples of loin, liver, pancreas and a kidney were collected, frozen and later analyzed for Se. The digestibility trial was conducted to evaluate the apparent absorption and retention of Se and availability of other nutrients. Growth performance was not affected by dietary sources and levels of Se. No growth retardation was observed in the 0.5 mg/kg dietary Se treatment group regardless of Se sources. The Se concentration of serum in Se supplemented groups was increased compared with the control group (p<0.01). During the growing and finishing phase, Se in serum was clearly increased when organic Se was provided (p<0.01). Interaction of Se source ${\times}$ Se level was observed in Se concentration of loin, liver and pancreas of the pigs at the end of experiment. Selenium retention in the liver, kidney, pancreas and loin of pigs was increased as dietary Se level increased and was higher when pigs were fed organic Se resulting in an interaction response (p<0.01). Nutrient digestibilities were not affected by dietary Se sources or levels. No dietary Se source ${\times}$ Se level interaction was observed in nutrient digestibility. The results from this experiment indicated that dietary Se sources and levels affected the distribution of Se in the body of growing-finishing pigs. Organic source of Se, such as Se-enriched yeast resulted in higher serum and tissue Se concentration compared to inorganic form, while no beneficial effects on nutrient digestibility were observed from dietary Se supplementation in growing-finishing pigs.

Changes in Organic and Inorganic Nutrients in Terminal Shoots of 'Fuyu' Persimmon during Spring Growth (감나무 정단신초의 봄 생장 동안 유기 및 무기 양분의 변화)

  • Yoon, Young-Whang;Choi, Seong-Tae;Park, Doo-Sang;Rho, Chi-Woong;Kim, Dae-Ho;Kang, Seong-Mo
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.279-288
    • /
    • 2014
  • To understand changes in composition and distribution of nutrients during early shoot growth of persimmon, organic compounds and inorganic elements of terminal shoots were analyzed for about 40 days from the time of foliation. Sample shoots were collected from mature 'Fuyu' trees for this three-year experiment and they were divided to stem, leaves, and the fruits including flower buds at the earliest stage. During shoot growth, concentration of soluble sugars increased in both leaves and fruits, but that of starch increased only in leaves. Those of amino acids tended to decrease in all the parts but there was no consistent change in proteins. As shoots grew, contents of all the organic compounds in a shoot increased, and they were especially higher in May leaves accounting for more than 60% of the shoot total for each nutrient. Along with shoot growth, concentrations of N and P gradually decreased in all three parts, while K decreased only in stem. However, those of Ca and Mg did not show notable changes in all the parts with wide variations depending on the year. Due to the quantitative increase in growth, contents of inorganic elements in a shoot increased in all the parts and the leaves accounted for 54-82% of the shoot total. At the cessation time of extension growth, a shoot contained 526-768 mg of soluble sugars, 245-844 mg of starch, 26-31 mg of amino acids, and 66-103 mg of proteins for three years. On the other hand, a shoot contained 203-388 mg of K, the greatest among the inorganic elements, followed by 132-159 mg of N. Changes of the nutrients in a shoot were much greater during the earlier stage of growth after foliation than during the later stage toward growth cessation, suggesting the importance of mobilizing reserve nutrients for the early growth of the shoots. The results of this study also suggested that the rate of nutrient changes, especially during the earlier stage of shoot growth, could be affected by environmental and cultural conditions.

Longitudinal Distribution of Zooplankton at 10.5°N in the Northeastern Pacific (북동태평양 북위 10.5°에서 동물플랑크톤의 경도별 분포 특성)

  • Kang, Jung-Hoon;Cho, Kyu-Hee;Son, Ju-Won;Kim, Woong-Seo
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.283-295
    • /
    • 2007
  • We investigated the longitudinal variations in zooplankton abundances and their related physicochemical properties at nine stations located between $136^{\circ}W$ and $128^{\circ}W$ at $10.5^{\circ}N$ in the northeastern Pacific in summer 2004. Temperature, salinity, inorganic nutrients, chlorophyll-a (hereafter chl-a) and zooplankton ($>200\;{\mu}m$) were sampled within the depth from the surface to 200 m depth at $1^{\circ}$ longitude intervals. Zooplankton($>200\;{\mu}m$) samples were vertically collected at two depth intervals from surface to 200 m, consisting of surface mixed and lower layers (thermocline$\sim$200 m). Longitudinal distributional pattern of hydrological parameters (especially salinity) was physically influenced by the intensity of westward geostrophic current passage relating to the NEC (North Equatorial Current). Data from the longitudinal survey showed clear zonal distributions in the hydrological parameters(temperature, salinity and nutrients). However, spatial patterns of the chl-a concentrations and zooplankton abundances were mostly independent of the zonal distributions of hydrological parameters. The two peaks of zooplankton abundance in the surface mixed layer were characterized by different controlling factors such as bottom-up control from nutrients to zooplankton ($129^{\circ}W$) and accumulation by increment of friction force and taxonomic interrelationship ($133^{\circ}$ and $134^{\circ}W$). Divergence-related upwelling caused introduction of nutrients into surface waters leading to the increment of chl-a concentration and zooplankton abundances ($129^{\circ}W$). Increased friction force in relation to reduced flow rates of geostrophic currents caused accumulation of zooplankton drifting from eastern stations of study area($133^{\circ}$ and $134^{\circ}W$). Besides, high correlation between immature copepods and carnivorous groups such as chaetognaths and cyclopoids also possibly contributed to the enhanced total abundance of zooplankton in the surface mixed layer (p<0.05). Zooplankton community was divided into three groups (A, B, C) which consecutively included the eastern peak of zooplankton($129^{\circ}W$), the western peak($133^{\circ}$ and $134^{\circ}W$) and high nutrient but low chl-a concentration and zooplankton abundance ($136^{\circ}W$). Moreover, Group B corresponded to the westward movement of low saline waters(<33.6 psu) from 128 to $132^{\circ}W$. In summary, longitudinal distributions of zooplankton community was characterized by three different controlling factors: bottom-up control ($129^{\circ}W$), accumulation by increased friction force and relationships among zooplankton groups ($133^{\circ}$ and $134^{\circ}W$), and mismatch between hydrological parameters and zooplankton in the high nutrient low chlorophyll area ($136^{\circ}W$) during the study period.

Spatial and Temporal Variability of Phytoplankton in Relation to Environmental Factors in Youngil Bay (영일만 수질환경과 식물플랑크톤의 시·공간적 분포)

  • Shim, Jeong-Min;Kwon, Ki-Young;Jeong, Hee-Dong;Choi, Yong-Kyu;Kim, Sang-Woo
    • Journal of Environmental Science International
    • /
    • v.22 no.12
    • /
    • pp.1683-1690
    • /
    • 2013
  • We investigated the spatial and temporal variations of phytoplankton in Youngil Bay as well as the effect of water physico-chemical parameters. Water samples at three stations were collected and measured monthly from May to November in 2010. The taxa of phytoplankton observed in this study were classified as 33 Bacillariophyceae, 23 Dinophyceae, 1 Euglenophyceae, 2 Crysophyceae and 1 Cryptophyceae. The highest biomass of phytoplankton was observed at inner station in September, which was characterized high concentration of dissolved inorganic phosphate(DIP) in surface water after rainfall. Nutrient concentrations, chlorophyll-a and phytoplankton biomass values showed the marked trend to decrease from the inner bay to the outer bay. Pearson's correlation co-efficient between salinity and other water parameters including chlorophyll-a, pH and DIP showed the strong negative relationship r=-0.82, r=-0.78 and r=-0.75 (p<0.01), respectively. These results indicate that the water quality of Youngil Bay could be stimulated by nutrient enriched input from Hyeogsan River discharge, and the spatial and temporal distribution of phytoplankton biomass principally limited to DIP concentration from Hyeogsan river.