DOI QR코드

DOI QR Code

Study on Growth Characteristics of Sargassum fulvellum in the Integrated Multi-trophic Aquaculture (IMTA) System

  • Received : 2014.08.12
  • Accepted : 2014.09.24
  • Published : 2014.10.31

Abstract

An eco-friendly integrated multi-trophic aquaculture (IMTA) farming technique was developed with the goal of resolving eutrophication by excess feed and feces as fish-farming by-products. A variety of seaweed species were tried to remove inorganic nutrients produced by fish farming. However, there have been few trials to use Sargassum fulvellum in an IMTA system, a species with a relatively wide distribution across regions with various habitat conditions, great nutrient removal efficiency and importance for human food source and industrial purposes. In this regard, our study tried to examine feasibility of using S. fulvellum in an IMTA system by analyzing growth characteristics of the species in an IMTA system comprising of rockfish (Sebastes shlegeli), sea cucumber (Stichopus japonocus) and the tried S. fulvellum (October 2011 - November 2012). We also monitored environment conditions around the system including current speed, water temperature and inorganic nutrient level as they may affect growth of S. fulvellum. S. fulvellum in the IMTA system, which were $15.72{\pm}5.67mm$ long at the start of the experiment in October 2011, grew to a maximum of $1093{\pm}271.13mm$ by May 2012. In September, seaweed growth was reduced to a minimum of $280{\pm}70.43mm$ in length. Then, S. fulvellum began to grow again reaching $325{\pm}196.19mm$ by November 2012. Wet weight of the seaweed was $4.01{\pm}1.89g$ at the start of the experiment and reached a maximum of $109.26{\pm}34.23g$ in May. The weight gradually declined to a low of $15.12{\pm}8.40g$ in September 2012. Weight began to increase once more, rising to $39.27{\pm}21.69g$ by November. During the experiment, the average velocity at the surface and the bottom was 6.5 cm/s and 3.4 cm/s, respectively. The water temperature ranged $5.0-23.5^{\circ}C$, which was considered suitable for growing S. fulvellum. Results of the study indicated no significant differences in inorganic nutrients between pre- and post-IMTA installation. It was thus concluded that S. fulvellum can be a suitable seaweed species to be used in an IMTA system.

Keywords

References

  1. Anderson, R., Smit, A. J., Levitt, G. J., 1999, Upwelling and fish-factory waste as nitrogen sources for suspended cultivation of Gracilaria gracilis in Saldanha Bay, South Africa, Hydrobiologia, 398/399, 455-462. https://doi.org/10.1023/A:1017095831356
  2. Barton, J. R., 1997, Environment, sustainability and regulation in commercial aquaculture: the case of Chilean salmonid production, Geoforum, 28, 313-328. https://doi.org/10.1016/S0016-7185(97)00013-4
  3. Bracken, M. E. S., Stachowicz, J. J., 2006, Seaweed diversity enhances nitrogen uptake via complementary use of nitrate and ammonium, Ecology 87, 2397-2403. https://doi.org/10.1890/0012-9658(2006)87[2397:SDENUV]2.0.CO;2
  4. Buschmann, A. H., Cabello, F., Young, K., Carvajal, J., Varela, D. A., Henriquez, L., 2009, Salmon aquaculture and castal ecosystem health in Chile: analysis of regulations, environmental impacts and bioremediation systems. Ocean and Coastal Management, 52, 243-249. https://doi.org/10.1016/j.ocecoaman.2009.03.002
  5. Buschmann, A. H., Troell, M., Kautsky, N., 2001, Integrated algal farming: a review, Cah. Biol. Mar., 42, 83-90.
  6. Buschmann, A. H., Troell, M., Kautsky, N., Kautsky, L., 1996, Integrated tank cultivation of salmonids and Gracilaria chilensis (Gracilariales, GRhodophyta), Hydrobiologia, 326(327), 75-82.
  7. Buschmann, A. H., Hernandez-Gonzalez, M. C., Aranda, C., Neori, A., Halling, C., Troell, M., 2008a, Nariculture waste management, in: Jorgensen, S. E., and Fath, B. D. (eds.), Ecolohical Engineering: Encyclopedia of Ecolohy, vol. 5, Elsevier, Oxford, U. K., 2211-2217.
  8. Buschmann, A. H., Varela, D. A., Hernandez-Gonzalez, M. C., Huovinen, p., 2008c, Opportunities and challenges for the development of an integrated seaweedbased aquaculture activity in Chile: determining the physiological capabilities of Nacrocystis and Gracilaria as biofilters, J. Appl. Phycol., 20, 571-577. https://doi.org/10.1007/s10811-007-9297-x
  9. Cao, L., Wang, W., Yang, Y., Yang, V., Yuan, Z., Xiong, S., Diana, J., 2007, Environmental Impact of Aquaculture and Countermeasures to Aquaculture Pollution in China, Env. Sci. Pollut. Res., 14, 452-462. https://doi.org/10.1065/espr2007.05.426
  10. Chopin, T., Buschmann, A. H., Halling, C., Troell, M., Kautsky, N., Neori, A., Kraemer, G. P., Zertuche-Gonzalez, J. A., Yarish, C., Neefus, C., 2001, Integrating seaweeds into aquaculture systems: a key towards sustainability, J. Phycol., 37, 975-986. https://doi.org/10.1046/j.1529-8817.2001.01137.x
  11. Chopin, T., Robinson, S. M. C., Troell, M., Neori, A., Buschmann, A. H., Fang, J., 2008, Multitrophic integration for sustainable marine aquaculture, in: Jorgensen, S. E., and Fath, B. D. (eds.), Ecological Engineering: Encyclopedia of Ecology, vol. 5., Elsevier, Oxford, U.K., 2463-2475.
  12. Chopin T., Yarish, C., 1998, Nutrients or not nutrients? That is the question in seaweed aquaculture and the answer depends on the type and purpose of the aquaculture system, World Aquaculture, 29, 31-33. https://doi.org/10.1111/j.1749-7345.1998.tb00297.x
  13. Daysher, L. E., 1984, Reproductive phenology of newly introduced populations of the brown alga, Sargassum muticum (Yendo) Fensholt, Hydrobiologia, 116/117, 403-407. https://doi.org/10.1007/BF00027710
  14. FAO. 2012, FAO State of the World Fisheries and Aquaculture 2012. Fisheries and Aquaculture Department, Rome. ISBN 978-92-5-106675-1.
  15. Goldman, J. C., Tenore, R. K., Ryther, H. J., Corwin, N., 1974, Inorganic nitrogen removal in a combined tertiary treatment-marine aquaculture system. I. Removal efficiencies, Water Res., 8, 45-54. https://doi.org/10.1016/0043-1354(74)90007-4
  16. Haround, R., Yokohama, Y., Aruga, Y., 1989, Annual growth cycle of brown algal Ecklonia cava in central Japan, Sci. Mar., 53, 2-3.
  17. Harrison, P. J., Hurt, C. L., 2001, Nutrient physiology of seaweew application of concepts to aquaculture, Cah. Bio. Mar., 42, 71-82.
  18. Hayashi, L., Yokoya, N. S., Ostini, S., Pereira, R. T., Braga, E. S., Oliveira, E. C., 2008, Nutrients removed by Kappaphycus alvarezii (Rhodophyta, Solieriaceae) in integrated cultivation with fishes in recirculating water, Aquaculture, 277, 185-191. https://doi.org/10.1016/j.aquaculture.2008.02.024
  19. Hernandez, I., Martinez-Aragon, J. F., Tovar, A., Perez-Llorens, J. L., Vergara, J. J., 2002, Biofiltering efficiency in removal of dissolved nutrients by three species of estuarine macroalgae cultivated with sea bass (Dicentrarchus labrax) wastewaters. 2. Ammonium, J. Appl. Phycol., 14, 375-384. https://doi.org/10.1023/A:1022178417203
  20. Hwang, E. K., Baek, J. M., Park, C. S., 2005, Growth, maturation and development of Sargassum fulvellum (Sargassaceae, Phaeophyta), J. Kor. Fish. Soc., 38(2), 112-117. https://doi.org/10.5657/kfas.2005.38.2.112
  21. Hwang, E. K., Gong, Y. G., Ha, D. S., Park, C. S., 2010, Nursery and main culture conditions for mass cultivation of the brown alga Ecklonia cava Kjellman, Kor. J. Fish. Aquat. Sci., 43, 684-692. https://doi.org/10.5657/kfas.2010.43.6.687
  22. Hwang, E. K., Park, C. S., Baek, J. M., 2006, Artificial seed production and cultivation of the edible brown alga, Sargassum fulvellum (Turner) C. Agardh: developing a new species for seaweed cultivation in Korea, J. Appl. Phycol., 18, 251-257. https://doi.org/10.1007/s10811-006-9021-2
  23. Kang, Y. H., Park, S. R., Chung, I. K., 2011, Biofiltration efficiency and biochemical composition of three seaweed species cultivated in a fish-seaweed integrated culture, Algae, 26, 97-108.
  24. Kim, C. S., Kim, H. C., Lee, W. C., Kim, J. B., Hong, S. J, Cho, Y. S., Han, J. H., 2012, The vertical distribution of organic materials in sediments and sedimentation rate of marine cage fish and shellfish farm, Korea, Proceeding of the Korean Society of Marine Environment & Safety in Spring, Jeju, pp. 397-399.
  25. Kim J. W., Cho, M. Y., Park, G. H., Won, K. M., 2010, Statistical data on infectious diseases of cultured olive flounder Paralichthys olivaceus from 2005 to 2007, J. Fish Pathol., 23(3), 369-377.
  26. KOEM. 2012, Annual report on marine environment monitoring in Korea, P359.
  27. Lander, T., Barrington, K., Robinson, S., MacDonald, B., Martin, J., 2004, Dynamics of the blue mussel as an extractive organism in an integrated multi-trophic aquaculture system, Bull. Aquacult. Assoc. Can., 104, 19-28.
  28. Lee, Y. P., Kang, S. Y., 2002, A catalogue of the seaweeds in Korea, Cheju National University Press, Korea, 662.
  29. Lobban, C. S., Harrison, P. J., 1994, Seaweed ecology and physiology-Cambridge university Press.
  30. Maegawa, M., 1990, Ecological studies of Eisenia bicyclis (Kjellman) Setchell and Ecklonia cava Kjellman. Bull. Fac. Bioresour. Mie Univ., 4, 73-145.
  31. Maegawa, M., Kida, M., 1989, Regeneration process of Ecklonia marine forest in the coastal area of Shima Peninsula, central Japan, J. Phycol., 37, 194-200.
  32. Martinez-Aragon, J. F., Hernandez, I., Perez-Liorens, J. L., Vazquez, R., Vergara, J. J., 2002, Biofiltering efficiency in removal of dissolved nutrients by three species of estuarine macroalgae cultivated with sea bass (Dicentrarchus labrax) waste waters 1. Phosphate, J. Appl. Phycol., 14, 365-374. https://doi.org/10.1023/A:1022134701273
  33. Mata, L., Silva, J., Schuenhoff, A., Santos, R., 2006, The effect of light and temperature on the photosynthesis of the Asparagopsis armata tetasporophyte (Falken-bergiarufolanasa), cultivated in tanks, Aquaculture, 252, 12-19. https://doi.org/10.1016/j.aquaculture.2005.11.045
  34. Mcvey, J. P., Stickney, R., Yarish, C., Chopin, T., 2002, Aquatic polyculture and balanced ecosystem management: new paradigms for seafood production, in: Stickney, R. R., McVey, J. P. (eds.), Responsible Aquaculture, CAB International, Oxon, U.K., 91-104.
  35. Mente, E., Prierce, P. J., Santos, M. B., Neofitou, C., 2006. Effect of feed and feeding in the culture of salmonids on the marine aquatic environment: a synthesis for European aquaculture, Aquac. Int., 14, 499-522. https://doi.org/10.1007/s10499-006-9051-4
  36. MLTM, 2010, A Guidebook for the Seawater, Sediment and Marine Biota Analyses in Ocean Environment, Ministry of Land, Transport and Maritime Affairs, MLTM Notice No. 2010-914, p. 495.
  37. MLTM, 2011, Annual monitoring report of Korean marine environment, Vol. 16. 1-505.
  38. Nagler, P. L., Glenn, E. P., Nelson, S., 2003, Effects of fertilization treatment and stocking density on the growth and production of the economic seaweed Gracilaria parvispora (Rhodophyta) in cage culture at Molokai, Hawaii. Aquaculture, 219, 379-391. https://doi.org/10.1016/S0044-8486(02)00529-X
  39. Naylor, R., Goldburg, R., Primavera, J., Kautsky, N., Beveridge, M., Clay, J., Folke, C., Lubchenco, J., Mooney, H., Troell, M., 2000, Effect of aquaculture on world fish supplies, Nature, 405, 1017-1024. https://doi.org/10.1038/35016500
  40. Neori, A., Chopin, T., Troell, M., Buschmann, A. H., Kraemer, G. P., Halling, C., Shpigel, M., Yarish, V., 2004, Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture, Aquaculture, 231, 361-391. https://doi.org/10.1016/j.aquaculture.2003.11.015
  41. Neori, A., Troell, M., Chopin, T., Yarish, C., Critchley, A., Buschmann, A., 2007, The need for a balanced ecosystem approach to blue revolution aquaculture, Environment, 49, 38-42.
  42. Novaczek, I., 1980, The development and phenology of Ecklonia radiate (C. Ag.) J. Ag. Ph D thesis, Auckland University, New Zealand.
  43. Oak, J. H., Lee, I. K., 2005, Taxonomy of the genus Sargassum (Fucale, Phaeophyceae) from Korea.. subgenus bactrophycus section teretia. Algae, 20(2), 77-90. https://doi.org/10.4490/ALGAE.2005.20.2.077
  44. Ohno, M., 1993, Succession of seaweed communities on artificial reefs in Ashizuri, Tosa Bay, Japan, Kor. J. Phycol., 8, 191-198.
  45. Park, M. S., Min, B. H., Kim, Y. D., Yoo, H. I., 2012, Biofiltration Efficiency of Saccharina japonica for Integrated Multi-Trophic Aquaculture (IMTA), KFAS, Korea.
  46. Pereira, R., Abreu, M. H., Valente, L., Rema, P., Sousa Pinto, I., 2010, Production of seaweeds in integrated multi-trophic aquaculture for application as ingredients in fish meal, XXth Inernational Seaweed Symposium book of abstracts, Ensenada, Mexico, 86.
  47. Phang, S. M., Shaharuddin, S., Noraishah, H., Sasekumar, A., 1996, Studies on Gracilaria changii (Gracilariales, Rhodophyta) from Malaysian mangroves, Hydro-biologia, 326/327, 347-352. https://doi.org/10.1007/BF00047829
  48. Serisawa, Y., Ohno, M., 1995, Succession of seaweed communities on artificial reefs in Tei, Toss Bay, Japan. Nippon Suisan Gakkaishi, 61, 854-859. https://doi.org/10.2331/suisan.61.854
  49. Skriptsova, A. V., Miroshnikova, N. V., 2011, Laboratory experiment to determine the potential of two macroalgae from the Fussian Far-East as biofilters for integrated multi-trophic aquaculture (IMTA), Bioresour. Technol., 102, 3149-3154. https://doi.org/10.1016/j.biortech.2010.10.093
  50. Ryther, J. H., Goldman, J. C., Gifford, C. E., Huguenin, J. E., Wing, A. S., Clarner, J. P., Williams, L. D., Lapointe, B. E., 1975, Physical models of integrated waste recycling-marine polyculture systems, Aquaculture, 5, 163-177. https://doi.org/10.1016/0044-8486(75)90096-4
  51. Troell, M., Halling, C., Neori, A., 2003, Integrated mariculture: Asking the right questions, Aquaculture, 226, 69-90. https://doi.org/10.1016/S0044-8486(03)00469-1
  52. Troell, M., Halling, C., Nilssonm A., Vuschmann, A.H., Kautsky, N., Kautsky, L., 1997, Integrated open sea cultication of Gracilaria chilensis (Gracilariales, Rhodophyta) and salmons for reduced environmental impact and increased economic output, Aquaculture, 156, 45-62. https://doi.org/10.1016/S0044-8486(97)00080-X
  53. Troell, M., Ronnback, P., Halling, C., Kautsky, N., Buschmann, A., 1999, Ecological engineering in aquaculture: use of seaweeds for removing nutrients from intensive mariculture, J. Appl. Phycol., 11, 89-97. https://doi.org/10.1023/A:1008070400208
  54. Yokohama, Y., Tanaka, J., Chihara, M., 1987, Oroductivity of the Ecklonia cava community in a bay of Izu Peninsula on the Pacific coast of Japan, Bot. Mag. Tokyo, 100, 129-141. https://doi.org/10.1007/BF02488318
  55. Yoon, J. T., Sun, S. M., Chung, G., 2013, Sagassum bed restoration by transplantation of germlings grown under protective mesh cage, J. Appl. Phycol., 26, 505-509.
  56. Wallentinus, I., 1984, Comparisons of nutrient uptake rates for Baltic macroalgae with different thallus morphologies, Mar. Biol., 80, 215-225. https://doi.org/10.1007/BF02180189
  57. Watanuki, A., Yamamoto, H., 1990, Settlement of seaweed on coastal structures, Hydrobiologia, 204/205, 275-280. https://doi.org/10.1007/BF00040245
  58. World Wildlife Fund, 2007, (June 22) Salmon Farming Threatens Chile's Patagonian Lakes. ScienceDaily. Retrieved October 19, 2008, from Gttp://www.sciencedaily.com/releases/2007/06/070621202901.html.
  59. Wu, R., 1995, The environmental impact of marine fish culture: Towards a sustainable future, Mar. Poll. Bull., 31, 159-166. https://doi.org/10.1016/0025-326X(95)00100-2
  60. Wu, C. Y., Zhang, Y. X., Li, R. Z., Penc, Z. S., Zhang, Y. F., Liu, Q. C., Zhang, J. P., Fang, X., 1984, Utilization of ammonium-nitrogen by Porphyra yezoensis and Gracilaria verrucosa. Hydrobiologia, 116/117, 475-477. https://doi.org/10.1007/BF00027726
  61. Wurts, W. A., 2000, Sustainable aquaculture in the twenty-first century, Rev. Fish Sci., 8, 141-150. https://doi.org/10.1080/10641260091129206
  62. Zhou, Y., Yang, H., Hu, H., Liu, Y., Mao, Y., Zhou, H., Xu, X., Zhang, F., 2006, Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of north China. Aquaculture, 252, 264-276. https://doi.org/10.1016/j.aquaculture.2005.06.046