• 제목/요약/키워드: Inorganic injection

검색결과 76건 처리시간 0.03초

유리섬유로 보강된 수지에서 제품설계 및 성형조건에 따른 휨의 연구: Part 2. 결정성 수지 (A Study on the Warpage of Glass Fiber Reinforced Plastics for Part Design and Operation Condition: Part 2. Crystalline Plastics)

  • 이민;김혁;류민영
    • 폴리머
    • /
    • 제36권6호
    • /
    • pp.677-684
    • /
    • 2012
  • 사출성형공정은 고온으로 수지를 가소화시키고 고압으로 금형에 흘려 보내어 제품을 성형하는 방법이다. 이 과정에서 고분자 수지는 온도의 변화에 따라 수축을 하게 되는 성형수축이 발생된다. 그리고 시간이 흐른 뒤에도 제품에 변형이나 휨이 발생하게 되는데 이는 제품에 포함되어 있는 잔류응력의 이완 때문이다. 이러한 휨을 막기 위해 수지에 무기물을 첨가하여 수축을 줄이거나, 수지에 유리섬유나 카본섬유 등 섬유를 사용하여 휨의 저항성을 높인다. 그리고 성형품을 강건하게 설계하여 응력에 따른 휨의 저항을 향상시킨다. 본 연구에서는 강건설계를 위해 리브를 설치한 성형품에 나타나는 휨을 실험을 통하여 조사하였다. 성형조건에 따라서, 그리고 금형설계에 따라서 즉, 게이트의 위치에 따라서 휨의 변화를 조사하였다. 수지의 흐름방향과 흐름의 직각방형의 휨도 조사하였다. 게이트 근처와 게이트에서 먼 부분의 휨도 비교분석 하였다. 수지는 유리섬유로 보강된 결정성 수지인 PP와 PA66를 사용하였다. 유리섬유가 포함된 결정성 수지는 유리섬유가 포함된 비결정성 수지보다 휨이 컸다. 결정성 수지는 비결정성 수지에 비해 휨이 성형조건에 다소 적게 영향을 받았지만 제품의 설계에 따라서는 크게 변하였다.

수중의 비소 종 분리 분석 (Speciation Analysis of Arsenic Species in Surface Water)

  • 정관조;김덕찬
    • 대한환경공학회지
    • /
    • 제30권6호
    • /
    • pp.621-627
    • /
    • 2008
  • 본 연구에서는 물속 As(III)와 As(V)의 종 규명분석에 필요한 HPLC와 DRC-ICP-MS의 최적조건을 설정하고, 이를 이용하여 한강 팔당수계 10개 지류 천으로부터 채취한 시료중의 As(III)와 As(V)를 분석 검토하였다. 종 분리를 위한 HPLC의 이동상으로는 10 mM ammonium nitrate와 10 mM ammonium phosphate monobasic을 사용하였으며, flushing solvent로는 5% v/v 메탄올을 사용하였다. 검출기는 DRC-ICP-MS를, 반응기체는 산소를 사용하였다. 최적 분석조건을 설정하기 위하여 이동상의 pH, 유량 및 시료 주입량과 DRC의 산소 유량을 달리하여 검토한 결과, 이동상의 pH는 9.4, 유량은 1.5 mL/min, 시료 주입량은 100 $\mu$L, 산소의 유량은 0.5 mL/min이었을 때 가장 좋은 분석조건으로 나타났다. 검정곡선은 As(III)와 As(V)에 대해 모두 r$^2$ = 0.998 이상의 선형성을 나타냈으며, As(III)의 검출한계는 0.10 $\mu$g/L, 정확도(RSD)는 4.3%, 회수율은 95.2%, As(V)의 검출한계는 0.08 $\mu$g/L, 정확도(RSD)는 3.6%, 회수율은 96.4%로 나타났다. 분석시간은 4분이었다. 설정된 파라미터를 적용하여 한강 팔당수계 유입 10개 지류 천에서 채수한 시료를 분석한 결과, As(III)는 0.10$\sim$0.22 $\mu$g/L, As(V)는 0.44$\sim$1.19 $\mu$g/L의 범위로 나타났으며, 총 비소의 93.5%가 As(V)의 형태인 것을 확인할 수 있었다.

Solution-Processed Inorganic Thin Film Transistors Fabricated from Butylamine-Capped Indium-Doped Zinc Oxide Nanocrystals

  • Pham, Hien Thu;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.494-500
    • /
    • 2014
  • Indium-doped zinc oxide nanocrystals (IZO NCs), capped with stearic acid (SA) of different sizes, were synthesized using a hot injection method in a noncoordinating solvent 1-octadecene (ODE). The ligand exchange process was employed to modify the surface of IZO NCs by replacing the longer-chain ligand of stearic acid with the shorter-chain ligand of butylamine (BA). It should be noted that the ligand-exchange percentage was observed to be 75%. The change of particle size, morphology, and crystal structures were obtained using a field emission scanning electron microscope (FE-SEM) and X-ray diffraction pattern results. In our study, the 5 nm and 10 nm IZO NCs capped with stearic acid (SA-IZO) were ligand-exchanged with butylamine (BA), and were then spin-coated on a thermal oxide ($SiO_2$) gate insulator to fabricate a thin film transistor (TFT) device. The films were then annealed at various temperatures: $350^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$, and $600^{\circ}C$. All samples showed semiconducting behavior and exhibited n-channel TFT. Curing temperature dependent on mobility was observed. Interestingly, mobility decreases with the increasing size of NCs from 5 to 10 nm. Miller-Abrahams hopping formalism was employed to explain the hopping mechanism insight our IZO NC films. By focusing on the effect of size, different curing temperatures, electron coupling, tunneling rate, and inter-NC separation, we found that the decrease in electron mobility for larger NCs was due to smaller electronic coupling.

고효율 광전자 소자 응용을 위한 전 무기 할라이드 페로브스카이트 나노결정 합 성 및 필름 제작 (Synthesis of all-inorganic halide perovskite nanocrystal and film fabrication for application in highly efficient optoelectronic device)

  • 최승희;김현빈;유정현;권석빈;정성국;송영현;윤대호
    • 한국결정성장학회지
    • /
    • 제28권3호
    • /
    • pp.106-111
    • /
    • 2018
  • 할라이드 페로브스카이트 나노결정은 고색순도 및 우수한 발광특성을 바탕으로 LED 응용에 대한 연구가 활발히 진행되고 있다. 고온주입법을 통하여 $CsPbX_3$(X = I, Br, and Cl) 나노결정을 합성하였고 할로젠 이온의 조성 변화를 통하여 발광파장을 제어하였다. 고분자 바인더를 사용하여 녹색과 적색의 필름을 제작하였다. 합성된 나노결정 및 제작된 필름의 우수한 광특성을 확인하였고, 이를 InGaN 청색 LED칩에 적용하여 우수한 색영역의 wLED를 구현하였다.

상수처리용 합성 무기고분자 Al(III)계 응집제의 화학적특성 (Characterization of Synthetic Polymeric AI(III) Inorganic Coagulants for Water Treatment)

  • 한승우;정철우;강임석
    • 한국환경과학회지
    • /
    • 제8권6호
    • /
    • pp.711-716
    • /
    • 1999
  • This research explored the feasibility of preparing and utilizing a prefonned polymeric solution of Al(III) for coagulation in water treatment. Slow base(NaOH) injection into supersaturated aluminum chloride and aluminum sulfate solutions did produce high yields of Al polymers useful to water treatment applications. The method of characterization analysis was based on timed spectrophotometer with ferron as a color developing reagent. The hydrolytic Al species were divided into $monomeric(Al_a),\;polymeric(Al_b),\;and\;precipitate(Al_c)$ from the difference in reaction kinetics. The analysis of PACl's characteristics showed that the quantity of polymeric Al produced at value of$ r(OH_{added}/AI)=2.2$ was $83\%$ of the total aluminum in solution, as showing maximum contents and precipitated Al was dramatically increased when r was increased above 2.35. In addition, the characteristics of polyaluminum sulfate (PAS) showed that polymeric Al contained at r = 0.75 was $18\%$ of the total aluminum in solution. The synthesized PACI and PAS were stable during storing period, as indicating negligible aging effect. The effect of sulfate ion on PACI was dependent on the concentration of sulfate ion. That is, polymeric species decrease and precipitate species increase as sulfate ion concentration increased. It can be concluded that the sulfate cause the formation of $Al(OH)_{3(S)}$ at low pH. However, The effect of calcium ion was negligible for distribution of Al species.

  • PDF

Electrical and Optical Study of PLED & OLEDS Structures

  • Mohammed, BOUANATI Sidi;SARI, N. E. CHABANE;Selma, MOSTEFA KARA
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권3호
    • /
    • pp.124-129
    • /
    • 2015
  • Organic electronics are the domain in which the components and circuits are made of organic materials. This new electronics help to realize electronic and optoelectronic devices on flexible substrates. In recent years, organic materials have replaced conventional semiconductors in many electronic components such as, organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaic (OPVs). It is well known that organic light emitting diodes (OLEDs) have many advantages in comparison with inorganic light-emitting diodes LEDs. These advantages include the low price of manufacturing, large area of electroluminescent display, uniform emission and lower the requirement for power. The aim of this paper is to model polymer LEDs and OLEDs made with small molecules for studying the electrical and optical characteristics. The purpose of this modeling process is, to obtain information about the running of OLEDs, as well as, the injection and charge transport mechanisms. The first simulation structure used in this paper is a mono layer device; typically consisting of the poly (2-methoxy-5(2'-ethyl) hexoxy-phenylenevinylene) (MEH-PPV) polymer sandwiched between an anode with a high work function, usually an indium tin oxide (ITO) substrate, and a cathode with a relatively low work function, such as Al. Electrons will then be injected from the cathode and recombine with electron holes injected from the anode, emitting light. In the second structure, we replaced MEH-PPV by tris (8-hydroxyquinolinato) aluminum (Alq3). This simulation uses, the Poole-Frenkel -like mobility model and the Langevin bimolecular recombination model as the transport and recombination mechanism. These models are enabled in ATLAS- SILVACO. To optimize OLED performance, we propose to change some parameters in this device, such as doping concentration, thickness and electrode materials.

$Al_2Nq_4$를 발광층으로 이용한 OLED의 계면 및 발광 특성에 관한 연구 (A Study on the Interface and Luminescent Properties of OLED using $Al_2Nq_4$ as an Emitting Layer)

  • 양기성;이호식;신훈규;김두석;김정균;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.215-219
    • /
    • 2004
  • Metal-chelate derivatives have been investigated intensively as an emitting layer and recognize to have excellent electroluminescence(EL) properties. We synthesized new luminescent material, 1,4-dihydoxy-5,8-naphtaquinone $Aiq_3$ complex($Al_2Nq_4$) and investigated the electrical optical properties. OLED has potential candidates for information display with merits of thickness, low power and high efficiency. Although the OLED show a lot of advantages for information display, it has the limit of inorganic(metal)/ organic interface. In this study, the two methods are used to study the interface of metal/organic in OLED. First, we treated $O_2$ plasma on an ITO thin film by using RIE system, and analyzed the ingredient of ITO thin film according to change of the processing conditions. We used the RDS and the XPS for the ingredient analysis of the surface and bulk. We measured electrical resistivity using Four-Point-Probe and calculated sheet resistance, and ITO surface roughness was measured by using AFM. We fabricated OLED using substrate that was treated optimum ITO surface. Second, we used the buffer layer of CuPc to improve the characteristics of the interface and the hole injection in OLED. The result of the study for electrical and optical properties by using I V L T System(Flat Panel Display Analysis System), we confirmed that the electrical properties and the luminance properties were improved.

  • PDF

Di-2-ethylhexyl Phthalate (DEHP)에 노출된 동자개, Pseudobagrus fulvidraco의 혈액적 (Di-2-ethylhexyl Phthalate Induced Haematological Effects in Bagrid Catfish, Pseudobagrus fulvidraco After Short Term Exposure)

  • 지정훈;금유화;강주찬
    • 생태와환경
    • /
    • 제37권3호통권108호
    • /
    • pp.313-318
    • /
    • 2004
  • Di-2-ethylhexyl Phthalate (DEHP)는 내분비장애물질로 분류되어 있는 플라스틱 가소제로서 in vitro에서 혈구세포막에 영향을 주는 것으로 알려져 있다. 본 연구는 동자개, Pseudobagrus fulvidraco를 대상으로 DEHP 급성 노출에 따른 혈액학적 영향을 파악하기위하여 어체중 당 300 및 1,000 mg의 DEHP를 복강주사하였다. DEHP (1,000 mg b.w. $^{-1}$에 노출된 동자개는 적혈구수와 혈색소 농도 및 적혈구 용적이 감소하는 경향을 나타내었다. 또한, 혈청 내 유기성분인 총단백질량, 콜레스테를 수치는 300 및 1,000 mg 주사구에서 유의적으로 감소하였으며 지방산의 농도는 1,000 mg 주사구에서 대조구와 비교하여 유의적으로 감소하였다. 혈청 무기성분인 칼슘농도와 혈액 삼투압 농도는 1,000 mg DEHP 노출구에서 유의적인 감소가 관찰되었다.

Fe(II)에 의해 활성화된 과황산을 이용한 페놀 오염 퇴적물 처리 타당성 평가 (Feasibility Study of Activation of Persulfate by Fe(II) for Phenol Contaminated Sediment)

  • 조재현;윤성은;김재문;황인성
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제25권4호
    • /
    • pp.77-86
    • /
    • 2020
  • Persulfate-based advanced oxidation processes (AOPs) can oxidize various organic pollutants. In this study, persulfate/Fe(II) system was utilized in phenol removal, and the effect of various organic and inorganic chelators on Fe(II)-medicated persulfate activation was investigated. The feasibility of persulfate/Fe(II)/chelator in cleanup of phenol-contaminated sediment was confirmed through toxicity assessment. In persulfate/Fe(II) conditions, the rate and extent of phenol removal increased in proportion to persulfate concentration. In chelator injection condition, the rate of phenol removal was inversely proportional to chelator concentration when it was injected above optimum ratio. Thiosulfate showed greater chelation tendency with persulfate than citrate and interfered with persulfate access to Fe(II), making the latter a more suitable chelator for enhancing persulfate activation. In contaminated clay sediment condition, 100% phenol removal was obtained within an hour without chelator, with the removal rate increased up to four times as compared to the rate with chelator addition. A clay sediment toxicity assessment at persulfate:Fe(II):phenol 20:10:1 ratio indicated 71.3% toxicity reduction with 100% phenol removal efficiency. Therefore, persulfate/Fe(II) system demonstrated its potential utility in toxicity reduction and cleanup of organic contaminants in sediments.

유기박막트랜지스터 응용을 위한 탄소가 도핑된 몰리브덴 박막의 특성 (Characteristics of Carbon-Doped Mo Thin Films for the Application in Organic Thin Film Transistor)

  • 김동현;박용섭
    • 한국전기전자재료학회논문지
    • /
    • 제36권6호
    • /
    • pp.588-593
    • /
    • 2023
  • The advantage of OTFT technology is that large-area circuits can be manufactured on flexible substrates using a low-cost solution process such as inkjet printing. Compared to silicon-based inorganic semiconductor processes, the process temperature is lower and the process time is shorter, so it can be widely applied to fields that do not require high electron mobility. Materials that have utility as electrode materials include carbon that can be solution-processed, transparent carbon thin films, and metallic nanoparticles, etc. are being studied. Recently, a technology has been developed to facilitate charge injection by coating the surface of the Al electrode with solution-processable titanium oxide (TiOx), which can greatly improve the performance of OTFT. In order to commercialize OTFT technology, an appropriate method is to use a complementary circuit with excellent reliability and stability. For this, insulators and channel semiconductors using organic materials must have stability in the air. In this study, carbon-doped Mo (MoC) thin films were fabricated with different graphite target power densities via unbalanced magnetron sputtering (UBM). The influence of graphite target power density on the structural, surface area, physical, and electrical properties of MoC films was investigated. MoC thin films deposited by the unbalanced magnetron sputtering method exhibited a smooth and uniform surface. However, as the graphite target power density increased, the rms surface roughness of the MoC film increased, and the hardness and elastic modulus of the MoC thin film increased. Additionally, as the graphite target power density increased, the resistivity value of the MoC film increased. In the performance of an organic thin film transistor using a MoC gate electrode, the carrier mobility, threshold voltage, and drain current on/off ratio (Ion/Ioff) showed 0.15 cm2/V·s, -5.6 V, and 7.5×104, respectively.