• Title/Summary/Keyword: Inorganic carbon

Search Result 601, Processing Time 0.031 seconds

Gas Separations of Natural Zeolite by Chemical Treatments (화학처리에 의한 천연 Zeolite의 Gas 분리)

  • Im, Goeng
    • The Journal of Natural Sciences
    • /
    • v.5 no.1
    • /
    • pp.67-75
    • /
    • 1992
  • In the our country, especially in Yeongil and Wolsung area, abundant authigenic zeolites are found from the tuffaceous sediments and volcanic rocks of Miocene age showing wide variation in their mineralogy and abundance from horizon to horizon. The principal zeolite species identified are clinopti-lolite. mordenite. heulandite. ferrierite, and erionite. etc. Zeolite minerals are widely used in many countries in the following applications; (a) in air separation adsorption processes; (b)as desiccants; (c)in inorganic building materials; (d)in papermaking; (e)in fertilizers; (f)as soilconditioners-this application is based upon the ability of the zeolite to ion exchange with soil nutrients; (g)in the treatment of radioactive wastes; and (h)as adsorbents for toxic gases, etc. In the present paper, using natural zeolite mordenite treated with IN hydrochloric acid or IN sodium chloride solution as column packings, separation characteristics of argon, nitrogen, carbon monoxide, and methane gases have been studied by gas chromatography. By the use of mordenite treated with hydrochloric acid solution, the tailing peak of methane showed from untreated mordenite was satisfactorily reduced, although it was difficult to separate it from carbon monoxide with a column activated at $300^{\circ}C$. Using a column activated at $350^{\circ}C$, methane could be separated from carbon monoxide easily but only carbon monoxide eluted as a bad defined peak. Mordenite treated with sodium chloride solution was generally similar to chromatograms obtained by using the untreated mordenite. Both the above chemical treatments of mordenite had little effect on the separations of argon and nitrogen. The separations and the HETP values obtained from natural zeolite mordenite treated with continuously hydrochloric acid and sodium chloride solutions were almost identical with those obtained with synthetic molecular sieve 5A zeolite. On the other hand, the efficiency of column was good in the range 20~3Oml/min of the carrier helium gas rate.

  • PDF

Effect of $ZnCl_2$ on Formation of Carbonized Phenol Resin Anode

  • Kim Han-Joo;Hong Ji-sook;Son Won-Ken;Park Soo-Gil;Oyama Noboru
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.85-89
    • /
    • 2000
  • For replacing Li metal at Lithium ion Battery(LIB) system, we used carbon powder material which prepared by Pyrolysis of Phenol resin as starting material. It became amorphous carbon by Pyrolysis through it's self condensation by thermal treatment. Amorphous carbon can be doped with Li intercalation and deintercalation because it has wide interlayer. However, it has a problem with structural destroy due to weak carbon-carbon bond. So, we used $ZnCl_2$ as the pore-forming agent. This inorganic salt was used together with the resin serves not only as the pore-forming agent to form open pores, which grow into a three-dimensional network structure in the cured material, but also as the microstructure-controlling agent to form a loose structure doped with bulky dopants. We used SEM in order to find to difference of structure, and can calculate the distance of interlayer by XRD analysis. CV test showed oxidation and reduction.

Electrochemical Performance of Graphite/Silicon/Carbon Composites as Anode Materials for Lithium-ion Batteries (리튬이온배터리 Graphite/Silicon/Carbon 복합 음극소재의 전기화학적 성능)

  • Jo, Yoon Ji;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.320-326
    • /
    • 2018
  • In this study, Graphite/Silicon/Carbon (G/Si/C) composites were synthesized to improve the electrochemical properties of Graphite as an anode material of lithium ion battery. The prepared G/Si/C composites were analyzed by XRD, TGA and SEM. Also the electrochemical performances of G/Si/C composites as the anode were performed by constant current charge/discharge, rate performance, cyclic voltammetry and impedance tests in the electrolyte of $LiPF_6$ dissolved inorganic solvents (EC:DMC:EMC=1:1:1 vol%). Lithium ion battery using G/Si/C electrode showed better characteristics than graphite electrode. It was confirmed that as the silicon content increased, the capacity increased but the capacity retention ratio decreased. Also, it was shown that both the capacity and the rate performances were improved when using the Silicon (${\leq}25{\mu}m$). It is found that in the case of 10 wt% of Silicon (${\leq}25{\mu}m$), G/Si/C composites have the initial discharge capacity of 495 mAh/g, the capacity retention ratio of 89% and the retention rate capability of 80% in 2 C/0.1 C.

The Martensitic Phase Transformation and Texture Development in Hadfield's Steels (Hadfield강에서의 마르텐사이트 상변태와 결정방위조직과의 관계 연구)

  • Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.858-868
    • /
    • 1995
  • Texture development and martensitic phase transformation, on rolling, are compared in two Hadfield's steels, one having low carbon content(0.65wt% C), the other high carbon content(1.35wt%). In spite of small difference in stacking fault energy(about 2 mJm$^{-2}$ ) between two Hadfield's steels, the differences in texture development are observed. In low carbon steel, the textures developed are similar to those of low stacking fault energy metals in low strain range. However, the abnormal textures such as {111} , {110} <001> are strongly developed at high strain, which are due to the disturbance of u martensite in the development of textures formed at the packets of shear bands or at the grain boundaries. In contrast to low carbon Hadfield's steel( LCHS), the texture development of high carbon Hadfield's steel(HCHS) is simitar to those of low stacking fault energy metals in the whole strain range. This may be due to the fact that the amount of deformation induced martensite was small, as observed by A.C. magnetic susceptibility and iron particle tests.

  • PDF

Usage of Coal in the Paradigm Shift toward Sustainable Energy (지속가능 에너지 패러다임 변화속에서 석탄의 활용)

  • Park, Jay Hyun;Yang, In Jae;Lee, Jin Soo;Lee, Cheong Ryong
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.793-807
    • /
    • 2020
  • The policy for Green New Deal will promote the shift of the application to coal as feedstock from coal as fuel. Coal can be used as fuel for production of hydrogen and as feedstock materials such as synthetic graphite or activated carbon. Hydrogen is obtained from syngas produced through Steam carbon(SC), Water-Gas Shift(WGS), and Carbonation reactions, and these processes should be used in conjunction with CO2 sequestration technology. Anthracite has a potential in terms of cost advantage as a feedstock compared to a petroleum pitch, because Synthetic graphite is prepared by heat treating an anthracite with high rank to a graphitization temperature which is in the range of 2400~2800℃, in the presence of inorganic catalyst such as silicon or iron. From several studies, it has been confirmed that coal-based activated carbon(AC) is manufactured with quality similar to the large specific surface area and much micropore volume of lignin-based AC, can be prepared. Therefore it is expected that lignin-based AC is replaced to coal-based AC.

A Study on Remediation Method of Diesel-Contaminated Railroad Soil using $TiO_2$-MMT ($TiO_2$-MMT를 이용한 디젤오염 철도토양의 개선방안에 관한 연구)

  • Yang, Young-Min;Huh, Hyun-Sue;Lee, Jae-Young;Lee, Cheul-Kyu;Jeon, Yu-Mi
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2870-2874
    • /
    • 2011
  • Soil pollution around railroad has been occurred mainly by diesel and lubricant oil, which is difficult to treat due to high carbon number. In this study, we investigated the feasibility of inorganic-inorganic nanohybrid photo-catalyst for the remediation of diesel-contaminated railroad soil. Generally, the $TiO_2$ nanoparticle easily removes organic pollutants due to photo and natural clay of layer structure. Also, montmorillonite (MMT) have an excellent absorption property with organic component. So, we prepared $TiO_2$ pillared MMT nanohybrid photo-catalyst as a chemical oxidant through the integration of theses advantage. As a result, the removal efficiency of diesel was more than 45% at a laboratory-scale test with diesel concentration and the amount of $TiO_2$-MMT. In future, we will improve the removal efficiency of diesel to optimize experimental parameters and apply the field soil The remediation method using photo-catalyst can be used to clean up the railroad soil polluted with high concentration instead of common methods such as soil washing, bioremediation, etc..

  • PDF

Microwave Melting of the Basalt Rock and Fiber Spinning (마이크로 파를 이용한 현무암 용융과 섬유 제조)

  • Huh, You;Kim, Hyung-Jin;Yang, Hee-Won;Jeon, Kyung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.78-85
    • /
    • 2009
  • High performance functional fibers are demanded increasingly in the modern industries, while the inorganic fibers such as carbon fibers, glass fibers, and metal fibers are representative among them in that they have high strength, consistent properties in a broad temperature change, etc.. This paper reports on the experimental trial to apply the microwave furnace on melting the natural basalt rock that spreads overall on the global surface and is supposed to be used as the raw material for the inorganic high performance fiber. Results showed that the new method to use the microwave as the heating source to melt the basalt rock was feasible. The crucible spinning could effectively applied for producing the basalt fibers up to 10 micrometer diameter, when the crushed basalt rocks were used. For drawing the molten basalt the drawing roller surface feature was a very important factor.

Review : Ionic Liquids as Green Solvent (리뷰 : 녹색용매로서의 이온성액체 기술동향)

  • Lee, Junwung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.690-702
    • /
    • 2013
  • Ionic liquids(ILs) have been the most investigated chemicals among green solvents including water, glycerol, supercritical carbon dioxdie($scCO_2$). ILs are attracting organic as well as inorganic chemicals because most ionic liquids' vapor pressures are very low so that ILs are liquids phase at ambient conditions. ILs are composed of various anions and cations, thus chemists can design functionalized solvents and/or catalysts that can be used in specific synthetic reactions by means of combinations of different ions. Many scientists believe ILs being green materials because of its low vapor pressure as well as the flexibility in controlling the chemical and physical properties. In this review the author describes recent development of ILs focused on imidazolium and pyridinium ILs which are being most investigated presently. In order to apply this materials in industrial level, the toxicity matter must be resolved first. In this regard, the author describes recent research trend regarding environmental effects by ILs as well as some meaningful results as well.

A Study on Electro-Optical Characteristics of the Ion Beam Aligned FFS Cell on the Inorganic Thin Film (무기 박막을 이용한 이온빔 배향 FFS 셀의 전기광학특성에 관한 연구)

  • Hwang, Jeoung-Yeon;Park, Chang-Joon;Jeong, Youn-Hak;Ahn, Han-Jin;Baik, Hong-Koo;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.94-97
    • /
    • 2004
  • In this paper, we investigate fringe-field switching (FFS) mode cell by the ion beam (IB) alignment method on the a-C:H thin film, to analyze electro-optical characteristics in this cell. We studied on the suitable inorganic thin film for fringe-field switching (FFS) cell and the aligning capabilities of nematic liquid crystal (NLC) using the new alignment material of a-C:H thin film An excellent voltage-transmittance (V-T) and response time curve of the IB-aligned FFS-LCD was observed with oblique IB exposure on the DLC thin films. Also, AC V-T hysteresis characteristics of the IB-aligned FFS-LCD with IB exposure on the DLC thin films is almost the same as that of the rubbing-aligned FFS cell on a polyimide (PI) surface.

  • PDF

Effectiveness of gold nanoparticle-coated silica in the removal of inorganic mercury in aqueous systems: Equilibrium and kinetic studies

  • Solis, Kurt Louis;Nam, Go-Un;Hong, Yongseok
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.99-107
    • /
    • 2016
  • The adsorption of inorganic mercury, Hg (II), in aqueous solution has been investigated to evaluate the effectiveness of synthesized gold (Au) nanoparticle-coated silica as sorbent in comparison with activated carbon and Au-coated sand. The synthesis of the Au-coated silica was confirmed by x-ray diffraction (Bragg reflections at $38.2^{\circ}$, $44.4^{\circ}$, $64.6^{\circ}$, and $77.5^{\circ}$) and the Au loading on silica surface was $6.91{\pm}1.14mg/g$. The synthesized Au-coated silica performed an average Hg adsorption efficiency of ~96 (${\pm}2.61$) % with KD value of 9.96 (${\pm}0.32$) L/g. The adsorption kinetics of Hg(II) on to Au-coated silica closely follows a pseudo-second order reaction where it is found out to have an initial adsorption rate of $4.73g/{\mu}g/min/$ and overall rate constant of $4.73{\times}10^{-4}g/{\mu}g/min/$. Au-coated silica particles are effective in removing Hg (II) in aqueous solutions due to their relatively high KD values, rapid adsorption rate, and high overall efficiency that can even decrease mercury levels below the recommended concentrations in drinking water.