• Title/Summary/Keyword: Inorganic binder

Search Result 159, Processing Time 0.026 seconds

Development of Wastewater Treatment System by Energy-Saving Photocatalyst Using Combination of Solar Light, UV Lamp and $TiO_2$ (태양광/자외선/이산화티타늄($TiO_2$)을 이용한 에너지 절약형 광촉매 반응 처리시스템 개발)

  • 김현용;양원호
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.51-61
    • /
    • 2003
  • Pollution purification using titanium dioxide (TiO$_2$) photocatalyst has attracted a great deal of attention with increasing number of relent environmental problems. Currently, the application of TiO$_2$ photocatalyst has been focused on purification and treatment of waste water. However. the use of conventional TiO$_2$ powder photocatalyst results in disadvantage of stirring during the reaction and of separation after the reaction. And the usage of artificial UV lamp has made the cost of photocatalyst treatment system high. Consequently, we herein studied the pilot-scale design to aid in optimization of the energy-saving process for more through development and reactor design by solar light/UV lamp/ TiO$_2$system. In this study, we manufactured the TiO$_2$sol by sol-gel method. According to analysis by XRD, SEM and TEM, characterization of TiO$_2$ sol were nano-size (5-6 nm) and anatase type. Inorganic binder (SiO$_2$) was added to TiO$_2$ lot to be coated for support strongly, and support of ceramic bead was used to lower separation rate that of glass bead The influences were studied of various experimental parameters such as TiO$_2$ quantity, pH, flow rate. additives, pollutants concentration, climate condition and reflection plate by means of reaction time of the main chararteristics of the obtained materials. In water treatment system, variable realtor as solar light/ or UV lamp according to climate condition such as sunny and cloudy days treated the phenol and E-coli(Escherichia coli) effectively.

A Study on the Characteristics and Utilization of Ash from ASR Incinerator (ASR 소각재의 이화학적 물성 및 재활용(再活用)을 위한 기초연구(基礎硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.32-39
    • /
    • 2007
  • The measurement of physicochemical properties of ASR incineration ash has been carried dot and the preparation of light-weight material has also been performed using ASR ash for recycling point of view as building or construction materials. For this aim, chemical composition, particle size distribution, and heavy metal leachability were examined for 2 bottom ashes and 4 fly ashes obtained from the domestic ASR incinerator. In the present work, attempt has been made to prepare the lightweight material using boiler ash as a raw material, which is prepared by forming the mixture of boiler ash, lightweisht filler and inorganic binder and followed by calcination at elevated temperature. As a result, the content of Cu in bottom ash was as high as about 3wt% so that the recovery of Cu from ash was required. The major compound of SDR #5 and Bag filter #6 was found to be $CaCl_2{\cdot}Ca(OH)_2{\cdot}H_2O\;and\;CaCl_2{\cdot}4H_2O$, respectively. It is thought that heavy metal teachability of lightweight material prepared with boiler ash was significantly decreased due to the encapsulation or stabilization of heavy metal compounds.

Studies on the Manufacturing of Carbon Bond Graphite Crucible (카아본 본드형 흑연 도가니 제조에 관한 연구)

  • 김충일;김문수
    • Journal of the Korean Ceramic Society
    • /
    • v.13 no.1
    • /
    • pp.11-19
    • /
    • 1976
  • This study was focused on the improvement of production techniques of small crucibles in relation with the appropriate selection of raw materials, various batch compositions and physical and chemical characteristics of the crucibles. Various tests gave the optimum batch composition for the carbon bond graphite cructble as follows: Pyontaek graphite flake (refractory aggregate) : 40Part Silicon carbide: 15Part Tar pitch (binder) : 11Part Inorganic additives (to improve the oxidation resistance) : 15 Part Cryolite : 3 Part Ferro manganese : 2 Part Ferrosilicon : 25 Part Crucibles pressed with 400kg/$\textrm{cm}^2$ at 12$0^{\circ}C$. and fired in reducing atmosphere at 120$0^{\circ}C$ brought the most favorable results as follows: Bulk density : 2.31 Apparent density : 2.58 Porosity : 15.2% Oxidation loss at 1, 50$0^{\circ}C$. for 3 hrs : below 3.77% Water absorption : 6.01% Compressive strength : 438kg/$\textrm{cm}^2$ Tensile strength : 256kg/$\textrm{cm}^2$.

  • PDF

Fabrication Process and Impact Characteristic Analysis of Metal Matrix Composite for Electronic Packaging Application (전자패키징용 금속복합재료의 제조공정 해석 및 충격특성평가)

  • 정성욱;정창규;남현욱;한경섭
    • Composites Research
    • /
    • v.15 no.1
    • /
    • pp.32-40
    • /
    • 2002
  • This study developed fabrication process of $SiC_p/Al$ metal matrix composites as electronic packaging materials by squeeze casting method. The $SiC_p$ preform were fabricated in newly designed preform mold using about 0.8 % of inorganic binder(SiO$_2$) and 5 vol.% of $Al_2O_3$fiber. To infiltrate the molten metal into the preform, fabrication condition such as the temperature and the pressure were selected. Applying the fabrication conditions, heat transfer analysis were preformed using finite element method and thus analyzed the temperature distribution and cooling characteristic during the squeeze casting. For the fabricated composites, impact toughness and thermal expansion coefficient were measured. The metal matrix composites developed in this study have 0.2~0.3 J impact toughness, $8~10 ppm/^{\circ}C$ thermal expansion coefficient and $2.9~3.0g/cm^3$density which is appropriate properties for electronic packaging application.

A Study on the Preparation of Lightweight Materials with Sewage Sludge Ash (하수(下水)슬러지 소각재(燒却滓)를 사용한 경량재료(輕量材料) 제조연구(製造硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.17 no.4
    • /
    • pp.30-36
    • /
    • 2008
  • The preparation of porous lightweight materials as well as the measurement of physical properties has been performed by using SSA(sewage sludge ash) as the raw material. For this aim, two types of lightweight filler, that is, perlite and silica sphere were employed respectively and bentonite was also used as an inorganic binder. The properties of lightweight specimen calcined at 1,000 were measured in terms of density, compressive strength, thermal conductivity and sound absorption to examine the effect of material composition as well as the preparation condition on the properties of lightweight material. As a result, the density of specimen prepared with perlite was ranged from 1.23 to $1.37g/cm^3$ and the compressive strength was ranged from 242.3 to $370.5kg/cm^2$. In case of specimen prepared with silica sphere, it was found that the compressive strength was less than $100kg/cm^2$ even though density was lower than that of specimen with perlite. As far as the thermal conductivity of specimen was concerned, it was ranged from 0.3 to $0.5W/m^{\circ}K$ depending on material composition so that the insulation effect was superior to conventional concrete.

Development of new antibacterial materials for manufacturing functional corrugated board for agricultural products (농산물용 기능성 골판지 제조를 위한 신규 항균재료 개발에 대한 연구)

  • Yoon, Hee-Youl;Oh, Seok-Ju;Lee, Ji-Young;Kim, Byeong-Ho;Lim, Gi-Baek;Choi, Jae-Sung;Kim, Sun-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.3
    • /
    • pp.34-40
    • /
    • 2012
  • In this study, new antibacterial materials were developed to manufacture a functional corrugated board. Sulfur solution, a new antibacterial solution made from inorganic sulfur in the laboratory, and other antibacterial mat erials were adopted to treat the surface of a linerboard. We measured the antibacteriocidal and bacteriostatic activities, as well as the fungal resistance of the surface-treated linerboards, to identify the antibacterial properties. The mechanical properties of the surface-treated linerboard were also determined in order to identify the effects of the antibacterial materials on linerboard properties. Linerboard treated with sulfur solution, PVOH, and sodium metasulfite showed the highest antibacterial activity, while linerboard treated with sulfur solution and nano sulfur showed the highest fungal resistance. It was identified that sulfur solution has effective antibacterial properties. The antibacterial materials did not affect the mechanical properties of the surface-treated linerboard, but the binder showed significant effects in terms of the burst strength, the compressive strength, and the stiffness of the linerboard.

Synthesis of all-inorganic halide perovskite nanocrystal and film fabrication for application in highly efficient optoelectronic device (고효율 광전자 소자 응용을 위한 전 무기 할라이드 페로브스카이트 나노결정 합 성 및 필름 제작)

  • Choi, Seung Hee;Kim, Hyun Bin;Yoo, Jung Hyeon;Kwon, Seok Bin;Jeong, Seong Guk;Song, Young Hyun;Yoon, Dae Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.3
    • /
    • pp.106-111
    • /
    • 2018
  • Halide perovskite nanocrystals have become attractive for LED applications due to their high color purity and excellent luminescent properties. $CsPbX_3$ (X = I, Br, and Cl) nanocrystals were synthesized by hot-injection method and the emission wavelength was controlled by changing the composition of halide ion. Green- and red-emitting films were fabricated using a polymer binder. The outstanding optical properties of the synthesized nanocrystals and fabricated films were confirmed. The wLED designed by green- and red-emitting perovskite nanocrystal films on blue InGaN LED was characterized.

A Study on the Characteristics and Utilization of Ash from Sewage Sludge Incinerator (하수(下水)슬러지 소각재의 특성(特性) 평가(評價) 및 재활용(再活用)을 위한 기초연구(基礎硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.17 no.3
    • /
    • pp.3-9
    • /
    • 2008
  • The measurement of physicochemical properties and chemical composition of SSA(sewage sludge ash) has been carried out and the preparation of lightweight material has also been performed using SSA for reuse as building or construction materials. For this aim, lightweight material has been prepared by forming the mixture of SSA, lightweight filler and inorganic binder followed by calcination at elevated temperature and characterized in terms of density and compressive strength. The pH of fly ash was found to be slightly alkaline, pH 8.69, due to the addition of caustic soda in order to neutralize the acidic gas while the pH of bottom ash was 6.48 Heavy metal leachability based on the standard leach test was also found to be below the detection limit for Cd, Cu, Pb, As and Cr of SSA. As far as the compressive strength of lightweight material was concerned, the compressive strength of lightweight material using fly ash was higher than that of lightweight material using bottom ash.

Strength Property of Ternary System Non-Cement Matrix according to the Curing Method (3성분계 무시멘트 경화체의 양생방법에 따른 강도특성)

  • Lee, Jin-Woo;Lee, Sang-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.4
    • /
    • pp.389-396
    • /
    • 2014
  • This study was conducted as the basic research for the replacement of Blast Furnace Slag, Red Mud, Silica Fume, etc., with cement as a solution to the problems arising from the global warming caused by the generation of $CO_2$, and conducted the experimental review to examine the feasibility of matrix having properties identical to those of cement by using the Blast Furnace slag, Red mud, Silica fume, and alkali-activator. For this, by using the the inorganic binder, such as Blast Furnace Slag, Red Mud, Silica Fume, etc., and NaOH, $Na_2SiO_3$ and others as the cement substitute material, the strength characteristic according to the mixture time variation was performed in the tentative experiment. Based on the preceding experiment, this study performed the experiment to analyze the strength properties of hardener through the curing by air-dry temperature, curing by temperature in water, coating curing, and Korean paper curing. For the water curing at $80^{\circ}C$, the compressive strength and flexural strength were found to be the most excellent at the age of the 28th day, and furthermore, it was found that the non-cement hardener could be made, which is considered to affect the production of eco-friendly concrete.

Hydration Reaction of Non-Sintering Cement Using Inorganic Industrial Waste as Activator (무기계 산업폐기물을 자극제로 이용한 비소성 시멘트의 수화반응)

  • Mun, Kyoung-Ju;Lee, Chol-Woong;So, Seung-Young;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.267-274
    • /
    • 2006
  • Greenhouse gas reduction will be highlighted as the most pending question in the cement industry in future because the production of Portland cement not only consumes limestone, clay, coal, and electricity, but also release waste gases such as $CO_2,\;SO_3$, and NOX, which can contribute to the greenhouse effect and acid rain. To meet the increase of cement demand and simultaneously comply with the Kyoto Protocol, cement that gives less $CO_2$ discharge should be urgently developed. This study aims to manufacture non-sintering cement(NSC) by adding phosphogypsum(PG) and waste lime(WL) to granulated blast furnace slag(GBFS) as sulfate and alkali activators. This study also Investigates the hydration reaction of NSC through analysis of scanning electron microscopy(SEM), X-ray diffraction(XRD), differential thermal analysis(DTA), and pH. Results obtained from analysis of the hydrate have shown that the glassy films of GBFS are destroyed by the activation of alkali and sulfate, ions eluted from the inside of GBFS react with PG and produce ettringite, and consequently the remaining component in GBFS slowly produced C-5-H(I) gel. Here, PG is considered not only to play the role of simple activator, but also to work as a binder reacting with GBFS.