• Title/Summary/Keyword: Inorganic Nutrient

Search Result 370, Processing Time 0.025 seconds

Nutrient Intake of Rural Housewives in Yeo-Ju Area (여주지역 농촌주부들의 영양소 섭취실태)

  • 오영주
    • Journal of Nutrition and Health
    • /
    • v.20 no.5
    • /
    • pp.301-308
    • /
    • 1987
  • An attempt was made to assess nutrient intake of a group of rural housewives living in the area of Yeo-Ju, forty persons were surveyed between July 4 and 5, 1984. All foods and beverage were weighed and collected as consumed in the home over 24-hour periods and protein and ten inorganic element in the diets were assayed by laboratory analysis. 1) The average food intakes of the subject per day were 1105.7g, which consisted of vegetable food (93.1%), animal food 96.6%), and fats and oils (0.3% . The energy percentage of carbohydrate, protein, and fat were 79.5%, 13.4% and 7.1%, respectively, showing higher dependence on carbohydrate. 2) The protein intake calculated from food table was 64.98g. The contribution of animal proteins to total protein was only 18.6g, for below the recommenced allowance. 3) Analysed daily mean intake (% of RDA) of protein (g), Ca(mg), K(g), Na(g), Mg(mg), P(mg), Zn(mg), Cu (mg), Mn(mg), Fe(mg) and Cl(g) were 60.79(93.3%), 395(65.9%), 4.79(85.268%), 6.53(198-594%), 321.4(107.15%), 827.8(103.38%), 15.81(105.4%), 1.66(55-835), 5.12(102.205%), 14.12(78.44%), 9.57(188-563%), respectively.

  • PDF

Chemical Budgets in Intensive Carp Ponds

  • Peng Lei;Oh Sung-Yong;Jo Jae-Yoon
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.4
    • /
    • pp.194-202
    • /
    • 2003
  • Budgets for water, nitrogen, and chemical oxygen demand (COD) were determined in two 0.012 ha earthy-bottom ponds stocked with Israeli strain common carp at an initial stocking density of $20\;fish/m^3$. Total ammonia nitrogen (TAN) concentrations increased continuously but later decreased in pond A as a consequence of high nitrification. COD concentrations increased during the experimental period due to the accumulation of feed input. Nutrient budgets showed that feed represented $94-95\%$ of nitrogen input and about 99% of organic matter input. Fish harvest accounted for $40\%$ of nitrogen and organic matter input. Seepage and water exchange removed $15-17\%$ of nitrogen input but only $1-2\%$ of organic matter. Draining of the ponds removed $20-26\%$ of input nitrogen, mostly in inorganic forms, but removed only minus organic matter. Fish and water column respiration accounted for $39\%$ of organic matter input, and benthic respiration accounted for $7-12\%$ of organic matter input. No significant change of nitrogen and organic matter in both pond bottoms were found during the three-month growth period. The unrecovered input nitrogen, about $6.3-13\%$, was lost through denitrification and ammonia volatilization. On a dry matter basis, fish growth removed $31\%$ of total feed input and left $69\%$ as metabolic wastes.

Tidal and Seasonal Variations of Nutrients in Keunso Bay, the Yellow Sea (서해 근소만에서 영양염의 조석 및 계절 변화)

  • Kim, Dong-Seon;Kim, Kyung-Hee
    • Ocean and Polar Research
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • In order to find the effect of intertidal sediments on nutrient cycle in coastal environment, we measured ammonia, nitrate, phosphate, and silicate concentrations every hour during at least 12 hours in the entrance of Keunso Bay during four seasons. The content of ammonia and silicate do not change considerably with season, but nitrate shows large seasonal variation. In summer, nitrate concentration was much lower than in other seasons, which resulted from large biological uptake and active denitrification in intertidal sediments during summer. Phosphate also exhibit seasonal variations, but not that large like nitrate. N/P and N/Si ratios were lower in summer than in other seasons, which was due to active denitrification in the intertidal sediments during summer. For all seasons, ammonia concentrations were higher at low tide than at high tide, but nitrate concentrations were higher at high tide. Dissolved inorganic nitrogen concentrations measured in spring, summer, and winter were higher at high tide than at low tide, but in fall, they were higher at low tide than at high tide. For spring and winter, phosphate and silicate concentrations were higher at low tide than at high tide, while in summer and fall, they were higher at high tide than at low tide. In Keunso Bay, intertidal sediments affect significantly the nutrient cycle around the coastal areas. The intertidal sediments act as a source for ammonia and silicate, but as a sink for nitrate. However, phosphate is not considerably influenced by intertidal sediments.

A Study on the Decomposition of Organic Matter and Regeneration of Nutrient in Seawater (해수중 유기물 분해와 영양염 재생의 특성에 관한 연구)

  • SONG Kyo-Ouk;PARK Chung-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.5
    • /
    • pp.356-361
    • /
    • 1991
  • This study was conducted to determine the decomposition rate constants of organic matter and to evaluate the process of regeneration of inorganic nutrients in coastal and open seawater. The mixture solution of glucose and glutamic acid, and night soil were used as the test organic matter. Oxygen uptake of test solution was observed every day for 5 days for evaluation of decomposition rate constants, and nutrient contents were analyzed every day for 40 days. The decomposition rate constants have been determined by Thomas slope method and compared with the values of each waters. The values of rate constants for open seawater and coastal water containing the mixture of glucose and glutamic acid were 0.23/day and 0.21/day, and those containing night soil 0.23/day and 0.20/day, respectively. The difference of decomposition rate constants between test materials was not found and the valus for each seawater was equal to each other. The nitrification process took place after 22 days for open seawater when night soil was added to the waters.

  • PDF

Development of a Nutritional Supplement Certified Reference Material for Elemental Analysis

  • Lee, Jong Wha;Heo, Sung Woo;Kim, Hwijin;Lim, Youngran;Lee, Kyoung-Seok;Yim, Yong-Hyeon
    • Mass Spectrometry Letters
    • /
    • v.9 no.4
    • /
    • pp.105-109
    • /
    • 2018
  • A certified reference material (CRM) for the analysis of inorganic nutrients in nutritional supplements has been developed. Accurate mass fractions of chromium (Cr), iron (Fe), copper (Cu), and zinc (Zn) were determined by isotope dilution inductively coupled plasma mass spectrometry (ID ICP/MS). The measurement results were used to assign certified values for the CRM, which were metrologically traceable to the definitions of the measurement units in the International System of Units (SI). Production of a candidate reference material (RM) and the certification processes are summarized. Each nutrient in the CRM showed good homogeneity, which was estimated using relative standard deviations of the measurement results of twelve bottles in a batch. This CRM is expected to be an important reference to improve reliability and comparability of nutrient analyses in nutritional supplements and related samples in analytical laboratories.

Influence of Fertilization Treatment using Organic Amendment based on Soil Testing on Plant Growth and Nutrient use Efficiency in Cabbage (토양검정에 의한 유기자원 시비처방이 양배추의 생육 및 양분이용효율에 미치는 영향)

  • Lim, Jin-Soo;Lee, Bang-Hyun;Kang, Seung-Hee;Lee, Tae-Guen
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.2
    • /
    • pp.95-105
    • /
    • 2020
  • BACKGROUND: In this study, in order to verify the effects of supplemented organic amendment fertilizers recommended by the soil testing on cabbages, we used various amounts of organic amendment fertilizers. The amount of organic amendment fertilizers was decided by calculating each ratio of inorganic nitrogen, phosphorus, and potassium based on the recommended fertilizer composition. METHODS AND RESULTS: The cabbages subjected to treatments 1 and 2 showed similar or greater leaf colors (SPAD values), head heights, head widths, head weight, soil organic matter content, nitrate-nitrogen level, and conductivity after harvest, when compared with cabbages treated with chemical fertilizers. The phosphorus and potassium fixation in the soil were higher in the plot where cabbages were treated with chemical fertilizers, and the nutrient use efficiency was greater in the plots with organic amendments and mineral addition. CONCLUSION: The treatments 1 and 2 that were supplemented with 180-200% of nitrogen, 100-130% of phosphorus, and 185-250% of potassium in comparison to chemical fertilizers, applied by the inorganic ratios of nitrogen, phosphorus, and potassium can be used as organic amendment fertilizers for cabbages.

Effects of different inorganic: organic zinc ratios or combination of low crude protein diet and mixed feed additive in weaned piglet diets

  • Oh, Han Jin;Kim, Myung Hoo;Lee, Ji Hwan;Kim, Yong Ju;An, Jae Woo;Chang, Se Yeon;Go, Young Bin;Song, Dong Cheol;Cho, Hyun Ah;Jo, Min Seok;Kim, Dae Young;Kim, Min Ji;Cho, Sung Bo;Kim, Hyeun Bum;Cho, Jin Ho
    • Journal of Animal Science and Technology
    • /
    • v.64 no.1
    • /
    • pp.23-37
    • /
    • 2022
  • Thirty-six weaned piglets with an initial body weight (BW) of 8.43 ± 0.40 kg (28 days of age, ([Landrace × Yorkshire] × Duroc) were randomly assigned to 6 treatments for a 2-week feeding trial to determine the effects of different inorganic zinc (IZ), organic zinc (OZ) or combination of low crude protein diet (LP) and Mixed feed additive (MFA) on diarrhea score, nutrient digestibility, zinc utilization, blood profiles, organ weight, and fecal microflora in weaned piglet diet. The pigs were individually placed in 45 × 55 × 45 cm stainless steel metabolism cages in an environmentally controlled room (30 ± 1℃). The dietary treatments included a negative control (NC), positive control (PC; zinc oxide, 1,000 mg/kg), T1 (IZ : OZ, 850 : 150), T2 (IZ : OZ 700 : 300), T3 (IZ : OZ, 500 : 500), and T4 (LP + MFA [0.1% Essential oils + 0.08% Protease + 0.02% Xylanase]). The daily feed allowance was adjusted to 2.7 times the maintenance requirement for digestible energy (2.7 × 110 kcal of DE/kg BW0.75). This allowance was divided into two equal parts, and the piglets were fed at 08 : 30 and 17 : 30 each day. Water was provided ad libitum through a drinking nipple. The diarrhea score was significantly increased (p < 0.05) in NC treatment compared with other treatments. The apparent total tract digestibility (ATTD) of dry matter (DM), nitrogen (N), and gross energy (GE) was significantly increased (p < 0.05) in the T2 treatment compared with the PC and NC treatments in week 1. In week 2, the ATTD of DM, N, and GE was significantly decreased (p < 0.05) in the NC treatment compared with other treatments. The T3 treatment had significantly higher (p < 0.05) ATTD and apparent ileal digestibility of zinc than the PC and T1 treatments. The Escherichia coli count in feces was significantly decreased in the T4 treatment compared with the NC and T2 treatments. The Lactobacillus count in feces was significantly increased in the T4 and T1 treatment compared with the T2 and T3 treatments. In conclusion, IZ : OZ 500 : 500 levels could improve nutrient digestibility and zinc utilization in weaned piglets, Moreover, MFA in LP diets could be used as a zinc alternative.

Biosynthesis of Eudesmane-type Sesquiterpenoids by The Wood-rotting Fungus, Polyporus brumalis, on Specific Medium, including Inorganic Magnesium Source

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.253-263
    • /
    • 2016
  • Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Ten additional species of white rot fungi were inoculated in medium containing nutrients such as $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ at $28^{\circ}C$ for 25 days. After 10 days of incubation, eudesmane-type sesquiterpenes, ${\beta}$-eudesmane and ${\beta}$-eudesmol, were only synthesized during the growth phase of P. brumalis. Experiments excluding one nutrient at a time were conducted to determine the effects of inorganic nutrients on sesquiterpene biosynthesis. In conclusion, GC-MS analysis showed that biosynthesis of sesquiterpenes was differentially regulated by inorganic nutrients such as $MgSO_4$, $C_4H_{12}N_2O_6$, and $KH_2PO_4$. We found $MgSO_4$ supplementation to be vital for eudesmane-type sesquiterpene biosynthesis in P. brumalis; nitrogen ($C_4H_{12}N_2O_6$) and phosphate ($KH_2PO_4$) inhibited the synthesis of P. brumalis metabolites. Magnesium is a known cofactor of sesquiterpene synthase, which promotes ${\beta}$-eudesmol synthesis. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

Estimation of N Mineralization Potential and N Mineralization Rate of Organic Amendments as Affected by C:N Ratio and Temperature in Paddy Soil

  • Shin, Jae-Hoon;An, Nan-Hee;Lee, Sang-Min;Ok, Jung-Hun;Lee, Byun-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.712-719
    • /
    • 2016
  • Understanding N mineralization dynamics in soil is essential for efficient nutrient management. An anaerobic incubation experiment was conducted to examine N mineralization potential and N mineralization rate of the organic amendments with different C:N ratio in paddy soil. Inorganic N in the soil sample was measured periodically under three temperature conditions ($20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$) for 90 days. N mineralization was accelerated as the temperature rises by approximately $10%^{\circ}C^{-1}$ in average. Negative correlation ($R^2=0.707$) was observed between soil inorganic N and C:N ratio, while total organic carbon extract ($R^2=0.947$) and microbial biomass C ($R^2=0.824$) in the soil were positively related to C:N ratio. Single exponential model was applied for quantitative evaluation of N mineralization process. Model parameter for N mineralization rate, k, increased in proportion to temperature. N mineralization potential, $N_p$, was very different depending on C:N ratio of organic input. $N_p$ value decreased as C:N ratio increased, ranged from $74.3mg\;kg^{-1}$ in a low C:N ratio (12.0 in hairy vetch) to $15.1mg\;kg^{-1}$ in a high C:N ratio (78.2 in rice straw). This result indicated that the amount of inorganic N available for crop uptake can be predicted by temperature and C:N ratio of organic amendment. Consequently, it is suggested that the amount of organic fertilizer application in paddy soil would be determined based on temperature observations and C:N ratio, which represent the decomposition characteristics of organic amendments.

Submarine Discharge and Geochemical Characteristics of Groundwater in the Southeastern Coastal Aquifer off Busan, Korea (부산 남동지역 연안 대수층내 지하수의 지화학적 특성과 유출)

  • Yang, Han-Soeb;Hwang, Dong-Woon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.3
    • /
    • pp.167-177
    • /
    • 2007
  • We measured the salinity, pH, and concentrations of $^{222}Rn$ and nutrients in groundwater in the southeastern coastal aquifer off Busan from March to September 2005 to evaluate its submarine discharge and geochemical characteristics. Salinity in coastal groundwater increased sharply at 20 m depth and exceeded 25 ppt below 40 m during the study period, indicating that a strong transition zone between fresh groundwater and seawater developed between 20 and 40 m depths. Fresh groundwater in the upper layer of this transition zone was characterized by high pH, $^{222}Rn$, dissolved inorganic nitrogen (DIN), and dissolved inorganic phosphorus (DIP) and low dissolved inorganic silicate (DSi) relative to seawater in the lower layer. In addition, the vertical profiles of the $^{222}Rn$, DIN, and DIP concentrations imply that a strong advective groundwater flow occurs along the interface of fresh groundwater and seawater near 20 m depth. The geochemical constituents in coastal groundwater also showed strong seasonal variation, with the highest concentrations in summer (June 2005) due to the changes of groundwater recharge and sea level. This implies that the input of terrestrial chemical species into the coastal ocean through submarine groundwater discharge (SGD) could change seasonally. To ascertain the seasonal variation of SGD and SGD-driven chemical species fluxes, and associated ecological responses in the coastal ocean, more extensive studies are necessary using various SGD tracers or seepage meters in the future.