• Title/Summary/Keyword: Inoculant

Search Result 134, Processing Time 0.024 seconds

Antifungal and carboxylesterase-producing bacteria applied into corn silage still affected the fermented total mixed ration

  • Dimas Hand Vidya Paradhipta;Myeong Ji Seo;Seung Min Jeong;Young Ho Joo;Seong Shin Lee;Pil Nam Seong;Hyuk Jun Lee;Sam Churl Kim
    • Animal Bioscience
    • /
    • v.36 no.5
    • /
    • pp.720-730
    • /
    • 2023
  • Objective: This study investigated the effects of corn silage as a source of microbial inoculant containing antifungal and carboxylesterase-producing bacteria on fermentation, aerobic stability, and nutrient digestibility of fermented total mixed ration (FTMR) with different energy levels. Methods: Corn silage was used as a bacterial source by ensiling for 72 d with an inoculant mixture of Lactobacillus brevis 5M2 and L. buchneri 6M1 at a 1:1 ratio. The corn silage without or with inoculant (CON vs MIX) was mixed with the other ingredients to formulate for low and high energy diets (LOW vs HIGH) for Hanwoo steers. All diets were ensiled into 20 L mini silo (5 kg) for 40 d in quadruplicate. Results: The MIX diets had lower (p<0.05) acid detergent fiber with higher (p<0.05) in vitro digestibilities of dry matter and neutral detergent fiber compared to the CON diets. In terms of fermentation characteristics, the MIX diets had higher (p<0.05) acetate than the CON diets. The MIX diets had extended (p<0.05) lactic acid bacteria growth at 4 to 7 d of aerobic exposure and showed lower (p<0.05) yeast growth at 7 d of aerobic exposure than the CON diets. In terms of rumen fermentation, the MIX diets had higher (p<0.05) total fermentable fraction and total volatile fatty acid, with lower (p<0.05) pH than those of CON diets. The interaction (p = 0.036) between inoculant and diet level was only found in the immediately fermentable fraction, which inoculant was only effective on LOW diets. Conclusion: Application of corn silage with inoculant on FTMR presented an antifungal effect by inhibiting yeast at aerobic exposure and a carboxylesterase effect by improving nutrient digestibility. It also indicated that fermented feedstuffs could be used as microbial source for FTMR. Generally, the interaction between inoculant and diet level had less effect on this FTMR study.

Effects of Co-Cultures, Containing N-Fixer and P-Solubilizer, on the Growth and Yield of Pearl Millet (Pennisetum glaucum (L.) R. Br.) and Blackgram (Vigna mungo L.)

  • POONGUZHALI POONGUZHALI;SELVARAJ SELVARAJ;MADHAIYAN MUNUSAMY;THANGARAJU MUTHU;RYU JEOUNGHYUN;CHUNG KEUNYOOK;SA TONGMIN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.903-908
    • /
    • 2005
  • Inoculation of the carrier-based mixed bioinoculants af N-fixer (Azospirillum lipoferum strain Az204/Rhizobium strain BMBS P47) and phosphate-solubilizing bacterium (Bacillus megaterium var phosphaticum strain Pb 1) promoted growth and yield of pearl millet and blackgram under pot-culture conditions. The mixed inoculant of Az204 and Pb 1 enhanced germination, seedling vigor, plant height, and seed weight, and resulted in $6\%$ increase in grain yield of pearl millet. Likewise, the mixed inoculant of BMBS P47 and Pb1 increased growth, nodulation, and yield in blackgram. The rhizosphere soil enzyme activities, including nitrogenase, urease, and phosphatase, in both pearl millet and blackgram were significantly increased by the inoculation of the mixed inoculant, compared to that of the individual inoculants. The results clearly indicate the beneficial effect of co-culturing the N-fixer and P-solubilizer in inoculants production.

Effects of Thickness, Base Element and Additive to Inoculant on the Number of Eutectic Cells and Chill Depth of Thin-Section Gray Cast Iron (박육주철의 공정 셀 수와 칠 깊이에 미치는 두께, 기본 원소 및 접종제 첨가 원소의 영향)

  • Kim, Tae-Hyeong;Lee, Woo-Jong;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.32 no.6
    • /
    • pp.261-268
    • /
    • 2012
  • The effects of thickness, base element and additive to inoculant on the number of eutectic cells and chill depth of thin-section gray cast iron were investigated. Meanwhile the number of eutectic cells increased by inoculation, chill depth decreased. The former decreased and the latter increased by holding the melt at the temperature range between 1,450 and $1,500^{\circ}C$. The former was more for the thinner casting with the thickness of 5 mm than the other. The result of thermal analysis coincided well with the change of macrostructure. The former increased and the latter decreased with the increased contents of carbon, silicon and the silicon content by inoculation. The former decreased and the latter increased with increased manganese content. The number of eutectic cells decreased as the amounts of rare earth and the bismuth added to this inoculant increased. With the addition of sulfur of 0.10 wt% of the weight of this inoculant, the maximum number of eutectic cells was obtained.

Studies on the Production and Utilization of Rhizobium Inoculants for Alfalfa (Medicago sativa L.) I. Preparation and seletion of carriers for Rhizobium inoculants (Alfalfa 근류균접종제 생산 및 이용에 관한 연구 I. 근류균제 생산을 위한 담체제조 및 선발)

  • Choi, Gi-Jun;Park, Geun-Je;Heu, Hoon;Lim, Young-Chul;Park, Byung-Hoon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.15 no.4
    • /
    • pp.245-252
    • /
    • 1995
  • To select a carrier as Rhizobiwn inoculants for alfalfa, severeal Rhizobium inoculants were produced by adding or not sub-materials($CaCO_3$ and sucrose) to main materials(organic or inorganic materials). The root nodule bacteria, Rhizobium meliloti 1061 distributed from KAIST, and Vemal alfalfa was used in this experiment. The Rhizobium populations and inoculation effects of the Rhizobium inoculants produced in several materials were scrutinized at laboratory and greenhouse in Livestock Experiment Station, RDA from 1993 to 1994. Moisture contents of the caniers were varied from 32 to 50% on dry weight basis according to material characteristics and the pH ranges of these were varied from pH 4.56 to 10.06 according to raw material characteristics and preparations. Initial Rhizobium numbers of the carriers were higher in organic material-inoculants than in inorganic, and among the inoculants, the inoculant made of Bentonite+Vermiculite(l:3 w/w) was excellent because of high rhizobium population($7.8~8.3\times10^8/g$ inoculant) and high rhizobium reappearance of inoculant in severed different production time. The root nodules of the alfalfa inoculated with different inoculants were fast formed in the fermented sawdust with cattle dung (FSC) inoculant, and bentonite(B)+vermiculite(V) than others. Plant length of alfalfa was differentiated on 15 days after inoculation but was not nearly different between higher inoculants than rhizobium number $10^7/g$ inoculant. Total dry matter of alfalfa was yielded by 20.65, 20.34mg per pot in FSC + sucrose 0.5% and B + V + sucrose 1% inoculants respectively that were higher inoculation effect by 17 times compared with non-inoculation, 1.2 mg per pot.

  • PDF

Effects of Increasing Moisture Content with or without Supplementing Inoculant (Lactobacillus plantarum) in TMR on Its Feed Value (TMR 제조 시 수분 함량 및 발효제 (Lactobacillus plantarum) 첨가유무가 사료가치에 미치는 영향)

  • Ki, Kwang-Seok;Kim, Hyeon-Shup;Lee, Hyun-June;Lee, Wang-Shik;Baek, Kwang-Soo;Kim, Sang-Bum;Lim, Keun-Bal;Jeo, Joon-Mo;Kim, Yong-Kook
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.3
    • /
    • pp.197-208
    • /
    • 2007
  • This study was carried out to investigate effects of increasing moisture content with or without supplementing inoculant (Lactobacillus plantarum) in TMR (total mixed ration) on its feed value. In case of exposing TMR to air, the lower the moisture level of TMR was, the less its apparent condition was changed. The time of spreading of molds tended to be faster in TMR with the higher moisture level. And also the odor was influenced by moisture content and inoculant supplement that is, sour odor was smelled from 24 hour after exposing TMR containing 35% and 50% moisture to air, but TMR supplemented with inoculant had sweet odor. The inner temperature of TMR containing 35% and 50% moisture without inoculant tended to increase continually after the lapse of 6 hours when the TMR was exposed to air. The inner temperature of TMR containing 35% moisture with inoculant tended to increase dramatically after the lapse of 48 hours when exposed to air, but that of TMR containing 50% moisture with inoculant tended to increase after 6 hours. The pH of TMR containing 15% was consistent regardless of exposing time to air, but that of TMR containing 35% and 50% moisture considerably increased after 12 and 24 hours, respectively. The concentration of $NH_3-N$ of TMR supplemented with inoculant was increased from 6 hours after exposure to air, while that or TMR without inoculant increased from 12 hours. Nutrient content or TMR tended to be increased with the increase of exposing time to air and storage time under sealed condition.

Effect of Maturity at Harvest and Inoculants on the Quality of Round Baled Rye Silage (수확시 숙기 및 젖산균 제제가 호밀 라운드베일 사일리지의 품질에 미치는 영향)

  • Kim, J.G.;Kim, D.A.;Chung, E.S.;Kang, W.S.;Ham, J.S.;Seo, s.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.4
    • /
    • pp.347-354
    • /
    • 1999
  • This experiment was carried out to determine the effect of maturity at harvest and inoculants on the quality of round baled rye(Secale cereale L.) silage at the experimental field of Grassland and Forage Crops Division, National Livestock Research Institute, RDA, Suwon in 1998. The experiment was consist of split-plot design with 3 replications. The main plots were 3 harvesting stages such as boot(20 April), heading(29 April), and flowering stages(14 May). The subplots wered inoculant treatments : control (untreated), inoculant A, and inoculant B. Acid detergent fiber(ADF), neutral detergent fiber(NDF), and in vitro dry matter digestibility (IVDMD) of rye silage were significantly increased with delayed harvesting date, but there was not significant difference between inoculants. Mean silage pH at flowering stage was the lowest(4.35), but the highest at early harvest(4.91). Inoculants significantly reduced acidity of silage compared with control. Dry matter(DM) content of the control was higher than that of inoculants. Ammonia-N as proportion of total N was below 10% which was maximum level of high quality silage. The addition of inoculants reduced ammonia-N. There were significant difference in organic acid contents between harvesting stages and inoculants. Lactic acid was increased with inoculants, but acetic and butyric acids were decreased. Various treatments increased colony forming unit(CFU) of lactic acid bacteria by 2 or 3 times compared with the control and the highest at flowering stage with inoculant B treatment. Results of this study indicate that use of microbial inoculant and harvesting after heading stage will improve the silage fermentation and quality of round baled rye silage.

  • PDF

Evaluation of Fermentation Ability of Microbes for Whole Crop Barley Silage Inoculant (보리 사일리지용 미생물의 발효능력 평가)

  • Kim, Jong-Geun;Ham, Jun-Sang;Chung, Eui-Soo;Park, Hyung-Soo;Lee, Joung-Kyong;Jung, Min-Woong;Choi, Ki-Choon;Cho, Nam-Chul;Seo, Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.3
    • /
    • pp.235-244
    • /
    • 2009
  • This experiment was conducted to develop a new silage inoculant for barley at forage analysis laboratory, Grassland and Forages Division, National Institute of Animal Science, RDA from 2000 to 2002. Barley is very important crop in Korea. The great part of them is utilized as forage. Generally, it contains a lot of grains that are feed of animal, especially whole crop silage in ruminant. Efficient lactic acid bacteria were isolated from good barley silage by plating MRS agar containing 0.02% sodium azide, and assessed by growing and acid producing ability in MRS broth. Four lactic acid bacteria were selected, and were found to be Gram positive, rods and catalase negative and were identified to be Lactobacillus plantarum on the basis of the biochemical characteristics and utilization of substrates. Barley was ensiled at dough stage following treatment with four lactic acid bacteria, commercial inoculant, and no additive (control). After 2 months, B2-2 bacteria inoculated silage was lower pH and higher lactic acid content than others treatments. The Flieg's score and grade of B2-2 bacteria treated silage were higher than commercial inoculant. According to this experiment, Lactobacillus plantarum B2-2 (NLRI 201) was recommendable for good silage inoculant of whole crop barley silage.

The Effects of Two Inoculants Applied to Forage Sorghum at Ensiling on Silage Characteristics

  • Guan, Wu-tai;Ashbell, G.;Hen, Y.;Weinberg, Z.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.2
    • /
    • pp.218-221
    • /
    • 2002
  • Whole forage sorghum (saccharatum) cultivar FS5 was harvested at the soft dough ($303{\pm}9g\;kg^{-1}$ DM) stage of maturity. The sorghum was chopped into approximately 20 mm pieces and ensiled under laboratory conditions in 1.5 L Weck glass jars. At ensiling, it was treated with two commercial silage inoculants: Pioneer 1188 (Inoculant A) and Eco-corn (Inoculant B). The inoculant A and B was applied at ca $2{\times}10^5$ or $2{\times}10^4$ colony forming units $g^{-1}$ DM., respectively. Silage with no additives served as a control. Three jars per treatment were opened on days 2, 4, 8, 15 and 60 post-ensiling to study fermentation dynamics. After 60 days of ensiling the silages were analyzed and subjected to an aerobic stability test lasting 5 days. Results showed that both inoculants caused a more rapid rate of pH decrease and a higher amount of lactic acid production. All the silages were well preserved and were stable upon exposure to air. Inoculants did not influence (p>0.05) the ash and total N contents, but tended to reduce acetic acid (p<0.05), butyric acid (p<0.01) and propionic acid (p<0.01) contents, and to increase the lactic acid content (p<0.01). The lower DM content of silages treated with Inoculant A agrees with the greater gas loss resulting from the DM loss, which was in good agreement with the higher yeast counts upon aerobic exposure. Silage treated with inoculant B had the highest DM (p<0.05) and lactic acid contents (p<0.01), and the lowest acetic acid content (p<0.05), which agrees with the rapid reduction of pH and smaller gas loss. Inoculant B reduced the ADF (p<0.01), ADL and NDF (p<0.05) contents, which also indicates smaller losses of organic soluble material. The control silages contained the highest levels of volatile fatty acids but no lactic acid, indicating secondary fermentation. It was concluded that both inoculants may improve the fermentation process, since silages from all treatments were stable upon aerobic exposure, noadvantage could be attributed to any of the inoculants used.

Evaluation of Fermentation Ability of Microbes for Corn Silage Inoculant (옥수수 사일리지용 미생물의 발효능력 평가)

  • Kim, Jong-Geun;Ham, Jun-Sang;Chung, Eui-Soo;Seo, Sung;Park, Hyung-Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.30 no.4
    • /
    • pp.333-342
    • /
    • 2010
  • Corn is very important forage in Korea. The great part of them is utilized as silage. Generally, it contains a lot of grains that is feed of animal. This experiment was conducted to evaluation of fermentation ability of microbes for corn silage inoculant. Good lactic acid bacteria were isolated from good corn silage by plating MRS agar containing 0.02% sodium azide, and assessed by growing and acid producing ability in MRS broth. Six lactic acid bacteria were selected, and were found to be Gram positive, rods and catalase negative and were identified to be lactobacillus plantarum (C3-2, B13-1, CC9-1), Lactobacillus fermentum (C11-4), Lactobacillus paracasei (B14-1), and Leuconostoc lactis (A3-1) on the basis of the biochemical characteristics and utilization of substrates. Corn was ensiled at ripen stage following treatment with selected five lactic acid bacteria, two commercial inoculant, and no additive (control). After 2 month, B13-1 and CC9-1 bacteria inoculated silage were lower pH and higher lactic acid content than others treatments. The Flieg's score and grade of B13-1 and CC9-1 bacteria treated silage were higher than commercial inoculant. According to this experiment, lactobacillus plantarum B13-1 and CC9-1 strain were recommendable for good inoculant of corn silage.

Application Effects of Bacterial Inoculants Producing Chitinase on Corn Silage

  • Young Ho Joo;Seung Min Jeong;Jiyoon Kim;Myeong Ji Seo;Chang Hyun Baeg;Seong Shin Lee;Byeong Sam Kang;Ye Yeong Lee;Jin Woo Kim;Sam-Churl Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.3
    • /
    • pp.148-155
    • /
    • 2023
  • This study was aimed to isolate bacterial inoculants producing chitinase and evaluate their application effects on corn silage. Four corn silages were collected from four beef cattle farms to serve as the sources of bacterial inoculants. All isolates were tested against Fusarium graminearum head blight fungus MHGNU F132 to confirm their antifungal effects. The enzyme activities (carboxylesterase and chitinase) were also measured to isolate the bacterial inoculant. Based on the activities of anti-head blight fungus, carboxylesterase, and chitinase, L. buchneri L11-1 and L. paracasei L9-3 were subjected to silage production. Corn forage (cv. Gwangpyeongok) was ensiled into a 10 L mini silo (5 kg) in quadruplication for 90 days. A 2 × 2 factorial design consists of F. graminearum contamination at 1.0104 cfu/g (UCT (no contamination) vs. CT (contamination)) and inoculant application at 2.1 × 105 cfu/g (CON (no inoculant) vs. INO (inoculant)) used in this study. After 90 days of ensiling, the contents of CP, NDF, and ADF increased (p<0.05) by F. graminearum contamination, while IVDMD, acetate, and aerobic stability decreased (p<0.05). Meanwhile, aerobic stability decreased (p<0.05) by inoculant application. There were interaction effects (p<0.05) on IVNDFD, NH3-N, LAB, and yeast, which were highest in UCT-INO, UCT-CON, CT-INO, and CT-CON & INO, respectively. In conclusion, this study found that mold contamination could negatively impact silage quality, but isolated inoculants had limited effects on IVNDFD and yeast.