• Title/Summary/Keyword: Innate immunity

Search Result 380, Processing Time 0.028 seconds

Latest Comprehensive Knowledge of the Crosstalk between TLR Signaling and Mycobacteria and the Antigens Driving the Process

  • Kim, Jae-Sung;Kim, Ye-Ram;Yang, Chul-Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1506-1521
    • /
    • 2019
  • Tuberculosis, which is caused by Mycobacterium tuberculosis (Mtb), is among the most pressing worldwide problems. Mtb uniquely interacts with innate immune cells through various pattern recognition receptors. These interactions initiate several inflammatory pathways that play essential roles in controlling Mtb pathogenesis. Although the TLR signaling pathways have essential roles in numerous host's immune defense responses, the role of TLR signaling in the response to Mtb infection is still unclear. This review presents discussions on host-Mtb interactions in terms of Mtb-mediated TLR signaling. In addition, we highlight recent discoveries pertaining to these pathways that may help in new immunotherapeutic opportunities.

Current Understanding on the Metabolism of Neutrophils

  • Jae-Han Jeon;Chang-Won, Hong;Eun Young Kim;Jae Man Lee
    • IMMUNE NETWORK
    • /
    • v.20 no.6
    • /
    • pp.46.1-46.13
    • /
    • 2020
  • Neutrophils are innate immune cells that constitute the first line of defense against invading pathogens. Due to this characteristic, they are exposed to diverse immunological environments wherein sources for nutrients are often limited. Recent advances in the field of immunometabolism revealed that neutrophils utilize diverse metabolic pathways in response to immunological challenges. In particular, neutrophils adopt specific metabolic pathways for modulating their effector functions in contrast to other immune cells, which undergo metabolic reprogramming to ensure differentiation into distinct cell subtypes. Therefore, neutrophils utilize different metabolic pathways not only to fulfill their energy requirements, but also to support specialized effector functions, such as neutrophil extracellular trap formation, ROS generation, chemotaxis, and degranulation. In this review, we discuss the basic metabolic pathways used by neutrophils and how these metabolic alterations play a critical role in their effector functions.

The Innate Immune Viral Sensors and Their Functional Crosstalk

  • Ji-Seung Yoo
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.2
    • /
    • pp.105-113
    • /
    • 2024
  • The precise and elaborate regulation of signaling cascades by diverse cytoplasmic and endosomal antiviral sensors is crucial for maintaining immune homeostasis and defending against viral pathogens. Receptors and enzymes that recognize foreign nucleic acids play a pivotal role in inducing antiviral interferon programs, serving as the first line of defense against various DNA and RNA viruses. Recent research has increasingly highlighted the crosstalk between nucleic acid sensors in detecting multiple virus invasions, resulting in amplified antiviral signals and compensating for any missing roles. This review provides an update on recent findings regarding the interplay of RNA sensors for DNA virus recognition.

Effects of Dietary Protein and Lipid Levels on the Growth Performance, Feed Utilization and Innate Immunity of Juvenile Red Seabream Pagrus major (사료 내 단백질과 지방 수준이 참돔(Pagrus major) 치어의 성장, 사료효율 및 비특이적 면역력에 미치는 영향)

  • Kim, Sung-Sam;Oh, Dae-Han;Choi, Se-Min;Kim, Kang-Woong;Kim, Kyoung-Duck;Lee, Bong-Joo;Han, Hyon-Sob;Lee, Kyeong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.3
    • /
    • pp.308-313
    • /
    • 2015
  • A $3{\times}3$ factorial study was conducted to investigate the effects of dietary protein and lipid levels on the growth, feed utilization and innate immunity of red seabream Pagrus major. Nine diets consisting of three protein levels (42%, 46% and 50% crude protein) and three lipid levels (10%, 14% and 18% crude lipid) were formulated. Triplicate groups of red seabream were fed the experimental diets to apparent satiation (5-6 times a day, from 08:00 to 18:00 h at 2-h intervals) for 10 weeks. At the end of the feeding trial, the weight gain and specific growth rate of fish fed P46L14 (46% protein and 14% lipid), P50L10 (50% protein and 10% lipid) and P50L14 (50% protein and 14% lipid) were significantly (P<0.05) higher than those of fish fed P42L18 (42% protein and 18% lipid). The feed conversion ratios (FCR) of the fish were affected by dietary lipid levels (P<0.039), but not dietary protein levels. The FCR tended to increase with increasing dietary lipid levels from 10% to 18% with the 46% and 50% protein levels. The weight gain, protein efficiency ratio, specific growth rate, feed intake and survival of fish were not affected by either dietary protein or lipid levels. Myeloperoxidase activity in the group fed P50L14 (50% protein and 14% lipid) was significantly higher than that in the group fed P42L10 (42% protein and 10% lipid) or P50L18 (50% protein and 18% lipid). However, the myeloperoxidase activity of fish was not affected by either dietary protein or lipid level. The fish fed P46L14 (46% protein and 14% lipid) and P46L18 (46% protein and 18% lipid) showed significantly higher superoxide dismutase activity than did the fish fed P46L10 (46% protein and 10% lipid), P50L10 (50% protein and 10% lipid) of P50L18 (50% protein and 18% lipid). In conclusion, the optimum protein and lipid levels for the growth and feed utilization of juvenile red seabream were 46% and 14%, respectively, and the optimum dietary protein to energy ratio was 27.4 g/MJ.

Effects of lactobacillus fermented brewer's yeast by-products on growth performance, innate immunity and antibacterial activity in Carp, Cyprinus carpio

  • Eun Chong Yang;Jae Hyeok Choi;Sang Mok Jung;Tae Won Jang;Jae Hoon Kim;Yu Jin Hwang;Hae In Jung;Chan Heun Lee;Sanghoon Choi
    • Journal of fish pathology
    • /
    • v.36 no.2
    • /
    • pp.323-336
    • /
    • 2023
  • This study was conducted to find out the effect of yeast by-products discarded after beer production as feed additives for carp (Cyprinus carpio). After producing feed by adding high-temperature dried beer yeast by-products (HD), freeze-dried beer yeast by-products (FD), and freeze-dried fermented beer yeast by-products (FF) after lactobacilli fermentation, innate immunity indicators, survival rates, and challenge experiments were evaluated. Both ACH50 and lysozyme activity were significantly increased (p<0.05) in the experimental group of FF 0.2% and 0.5% compared to the control group from day 7 to day 21. In addition, phagocyte activity was significantly increased (p<0.05) in the group of FF 0.5% compared to the control group at all time points. Both IL-1β and TNF-α expression levels increased significantly in the FD and FF groups on day 21 compared to the control group (p<0.05). In addition, the FF 0.5% group showed significantly higher expression levels (p<0.05) at all time points. Similarly, IL-10 expression increased significantly (p<0.05) in FF 0.2% and 0.5% groups at all time points. SOD gene expression was significantly increased in FD 0.5% and all FF groups on day 14 and 21 (p<0.05). The results of a 10-day challenge experiment using Edwardsiella piscicida (E. piscicida) showed a higher relative survival rate than the control group at all concentrations that fed FD and FF. In summary, it is estimated that 0.5% FF can effectively improve the innate immunity, growth rate, and antibacterial properties of carp rather than using discarded beer yeast supernatant alone as a functional feed additive.

Korean Mistletoe (Viscum album Coloratum) Extract Induces Eel (Anguilla japonica) Non-specific Immunity

  • Yoon, Taek-Joon;Park, Kwan-Ha;Choi, Sang-Hoon
    • IMMUNE NETWORK
    • /
    • v.8 no.4
    • /
    • pp.124-129
    • /
    • 2008
  • Background: The immunomodulatory effects of Korean mistletoe (Viscum album Coloratum) on the innate immune responses of eel (Anguilla japonica) were studied. Methods: Mistletoe, Freund’s complete adjuvant (FCA), or phosphate-buffered saline (PBS) as a control was injected into eel peritoneal cavities. Results: Nitroblue tetrazolium (NBT)-positive cells in the head kidney of eel were significantly augmented by the second day post-injection of mistletoe. Reactive oxygen intermediates (ROI) were more produced in mistletoe-injected fish kidney leucocytes than in FCA-injected ones. The level of lysozyme activity in the serum of fish 2 days after injection with mistletoe was also significantly higher than that in the serum of the control fish. The optimal concentration of mistletoe in inducing the highest serum lysozyme activity was revealed to 500${\mu}$g/200 g of fish. In phagocytic activity assay, mistletoe-sensitized eel kidney phagocytes captured more zymosan than did the control fish. Conclusion: Korean mistletoe appeared to be a good activator of the non-specific immune responses of eel.

The Genetics and Pathogenesis of Inflammatory Bowel Disease (염증성 장질환의 유전학과 병인론)

  • Ko, Jae Sung
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.11 no.sup2
    • /
    • pp.59-66
    • /
    • 2008
  • Genome-wide association studies using large case-control samples and several hundred thousand genetic markers efficiently and powerfully assay common genetic variations. The application of these studies to inflammatory bowel disease has led to the identification of susceptibility genes and affirmed the importance of innate and adaptive immunity in the pathogenesis of disease. Efforts directed towards the identification of environmental factors have implicated commensal bacteria as determinants of dysregulated immunity and inflammatory bowel disease. Host genetic polymorphisms most likely interact with functional bacterial changes to stimulate aggressive immune responses that lead to chronic tissue injury.

  • PDF

The Role of Immune Response in Periodontal Disease (치주질환의 면역학)

  • Kim, Kack-Kyun
    • IMMUNE NETWORK
    • /
    • v.3 no.4
    • /
    • pp.261-267
    • /
    • 2003
  • The periodontal diseases are infections caused by bacteria in oral biofilm, a gelatinous mat commonly called dental plaque, which is a complex microbial community that forms and adhere to tooth surfaces. Host immune-pathogen interaction in periodontal disease appears to be a complex process, which is regulated not only by the acquired immunity to deal with ever-growing and -invading microorganisms in periodontal pockets, but also by genetic and/or environmental factors. However, our understanding of the pathogenesis in human periodontal diseases is limited by the lack of specific and sensitive tools or models to study the complex microbial challenges and their interactions with the host's immune system. Recent advances in cellular and molecular biology research have demonstrated the importance of the acquired immune system in fighting the virulent periodontal pathogens and in protecting the host from developing further devastating conditions in periodontal infections. The use of genetic knockout and immunodeficient mouse strains has shown that the acquired immune response, in particular, $CD4^+$ T-cells plays a pivotal role in controlling the ongoing infection, the immune/inflammatory responses, and the subsequent host's tissue destruction.

Crosstalk between the Producers and Immune Targets of IL-9

  • Van Anh Do-Thi;Jie-Oh Lee;Hayyoung Lee;Young Sang Kim
    • IMMUNE NETWORK
    • /
    • v.20 no.6
    • /
    • pp.45.1-45.16
    • /
    • 2020
  • IL-9 has been reported to play dual roles in the pathogenesis of autoimmune disorders and cancers. The collaboration of IL-9 with microenvironmental factors including the broader cytokine milieu and other cellular components may provide important keys to explain its conflicting effects in chronic conditions. In this review, we summarize recent findings on the cellular sources of, and immunological responders to IL-9, in order to interpret the role of IL-9 in the regulation of immune responses. This knowledge will provide new perspectives to improve clinical benefits and limit adverse effects of IL-9 when treating pathologic conditions.

Regulation of Th2 Cell Immunity by Dendritic Cells

  • Hyeongjin Na;Minkyoung Cho;Yeonseok Chung
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • Th2 cell immunity is required for host defense against helminths, but it is detrimental in allergic diseases in humans. Unlike Th1 cell and Th17 cell subsets, the mechanism by which dendritic cells modulate Th2 cell responses has been obscure, in part because of the inability of dendritic cells to provide IL-4, which is indispensable for Th2 cell lineage commitment. In this regard, immune cells other than dendritic cells, such as basophils and innate lymphoid cells, have been suggested as Th2 cell inducers. More recently, multiple independent researchers have shown that specialized subsets of dendritic cells mediate Th2 cell responses. This review will discuss the current understanding related to the regulation of Th2 cell responses by dendritic cells and other immune cells.