• Title/Summary/Keyword: Innate immunity

Search Result 380, Processing Time 0.03 seconds

Resistance of Bovine Colostrum Exosomes to Bacterial Infection by Regulating Iimmunity in Caenorhabditis elegans Model

  • Minkyoung Kang;Minji Kang;Sangnam Oh
    • Journal of Dairy Science and Biotechnology
    • /
    • v.42 no.2
    • /
    • pp.35-47
    • /
    • 2024
  • Milk exosomes contain several bioactive molecules, including lipids, proteins, and miRNAs, which enhance immune response. This study aimed to assess the resistance effects of bovine colostrum exosomes (BCEs) on pathogenic microbial infections in a Caenorhabditis elegans model. BCEs have been shown to enhance the protective response of C. elegans to pathogenic bacterial infections. Our study revealed that BCE extended the lifespan of worms compared to control OP50 worms. In addition, nematode colostrum exosomes promoted nematode resistance to four pathogenic bacteria and prolonged their lifespan in a killing assay. In contrast, mature milk-derived exosomes (BME) did not affect the resistance and lifespan of nematodes exposed to pathogenic bacteria. BCE exposure extended the lifespan of C. elegans against pathogenic infections by stimulating the innate immune response and increasing antimicrobial protein expression. Using biological process-related gene ontology (GO) enrichment analysis, the significantly upregulated GO terms related to C. elegans immunity in BCE-exposed C. elegans included defense, innate immunity, and immune responses. This study demonstrated that BCE enhanced the host defense of C. elegans to prolong its lifespan, thereby suggesting a new natural product against infection by pathogenic bacteria.

Effects of Citurs unshiu Markovich on growth performance and bactericidal activity of nile tilapia Oreochromis niloticus (진피(Citurs unshiu Markovich)추출물이 틸라피아(Oreochromis niloticus)의 성장률 및 항균효과에 미치는 영향)

  • Bang, Seok Jin;Lee, Chan Heun;Kang, Tae Yun;Choi, Jae Hyeok;Jung, Sang Mok;Kang, In Sung;Park, Kwan Ha;Choi, Sang Hoon
    • Journal of fish pathology
    • /
    • v.32 no.2
    • /
    • pp.105-111
    • /
    • 2019
  • Citurs unshiu Markovich is a medicinal product of dried tangerine peel (DTP). It is effective on antioxidation, and getting fame as a medicine and functional food. By utilizing DTP as a feed additive, we aim to enhance the growth rate, innate immunity, and bacterial infection resistance to Tilapia. The DTP extract was added to the feed weight by 0.1, 0.5, 1, 5% and then fed to tilapia for 7 days to evaluate the innate immunity parameter, growth rate and anti-bacterial activity. Innate immunity parameter results showed that the ROI was significantly higher in the 5% group added at high concentration, while showing decrease or no differences in other experimental groups. In other parameters, all the experimental groups showed no significant difference or decreased compared to the control group. The challenge test showed a high survival rate of 71% in the 0.5% group and the lowest in the control group (36%). For the growth rate, the feed efficiency was improved in all groups except for the 0.1% group compared to the control group. In conclusion, DTP extract has bacterial resistant effect in while not affecting innate immune system of fish. Also, it has shown the potential as a possible feed additive as it has brought the improvement on feed efficiency ratio.

Ginseng, the 'Immunity Boost': The Effects of Panax ginseng on Immune System

  • Kang, Soo-Won;Min, Hye-Young
    • Journal of Ginseng Research
    • /
    • v.36 no.4
    • /
    • pp.354-368
    • /
    • 2012
  • Thousands of literatures have described the diverse role of ginseng in physiological processes such as cancer, neurodegenera tive disorders, insulin resistance, and hypertension. In particular, ginseng has been extensively reported to maintain homeostasis of the immune system and to enhance resistance to illness or microbial attacks through the regulation of immune system. Immune system comprises of different types of cells fulfilling their own specialized functions, and each type of the immune cells is differentially influenced and may be simultaneously controlled by ginseng treatment. This review summarizes the current knowledge on the effects of ginseng on immune system. We discuss how ginseng regulates each type of immune cells including macrophages, natural killer cells, dendritic cells, T cells, and B cells. We also describe how ginseng exhibits beneficial effects on controlling inflammatory diseases and microbial infections.

Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity

  • Park, Chang-Jin;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.323-333
    • /
    • 2015
  • As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.

IL-4 Derived from Non-T Cells Induces Basophil- and IL-3-independent Th2 Immune Responses

  • Kim, Sohee;Karasuyama, Hajime;Lopez, Angel F.;Ouyang, Wenjun;Li, Xiaoxia;Gros, Graham Le;Min, Booki
    • IMMUNE NETWORK
    • /
    • v.13 no.6
    • /
    • pp.249-256
    • /
    • 2013
  • How Th2 immunity develops in vivo remains obscure. Basophils have been considered key innate cells producing IL-4, a cytokine essential for Th2 immunity. Increasing evidence suggests that basophils are dispensable for the initiation of Th2 immunity. In this study, we revisited the role of basophils in Th2 immune responses induced by various types of adjuvants. Mice deficient in IL-3 or IL-3 receptor, in which basophil lymph node recruitment is completely abolished, fully developed wild type level Th2 CD4 T cell responses in response to parasite antigen or papain immunization. Similar finding was also observed in mice where basophils are inducibly ablated. Interestingly, IL-4-derived from non-T cells appeared to be critical for the generation of IL-4-producing CD4 T cells. Other Th2 promoting factors including IL-25 and thymic stromal lymphopoietin (TSLP) were dispensable. Therefore, our results suggest that IL-3- and basophil-independent in vivo Th2 immunity develops with the help of non-T cell-derived IL-4, offering an additional mechanism by which Th2 type immune responses arise in vivo.

Toll-like Receptor 4 Polymorphism and Periodontitis in Korean Population

  • Park, Ok-Jin;Shin, Seung-Yun;Chung, Chong-Pyoung;Ku, Young;Choi, Young-Nim;Kim, Kack-Kyun
    • International Journal of Oral Biology
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • The primary cause of periodontitis is plaque-associated anaerobic gram-negative bacteria. As shown in the patients with defects in the number or function of neutrophils, innate immunity plays an important role in resistance to bacterial infection and periodontitis. Toll-like receptor 4(TLR4) is one of the key receptors that recognize the molecular patterns of microbes and initiate innate immune response. To understand the role of TLR4 in the pathogenesis of periodontitis, we investigated whether Asp299Gly of TLR4 mutation is associated with periodontitis in Korean population. Subjects for this study included 90 healthy subjects and 98 periodontitis patients. The Asp299Gly mutation was screened by PCR-Restriction Fragment Length Polymorphism(RFLP) of genomic DNA from blood cells using a primer that creates a NcoI restriction site only in the mutant allele. The Asp299Gly mutation was not found in all subjects tested. Our results suggest that the Asp299Gly mutation of TLR4 is very rare in a Korean population. Further mutation screening may be required to determine the role of TLR4 in the pathogenesis of periodontitis.

Hepatitis E Virus Methyltransferase Inhibits Type I Interferon Induction by Targeting RIG-I

  • Kang, Sangmin;Choi, Changsun;Choi, Insoo;Han, Kwi-Nam;Roh, Seong Woon;Choi, Jongsun;Kwon, Joseph;Park, Mi-Kyung;Kim, Seong-Jun;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1554-1562
    • /
    • 2018
  • The type I interferons (IFNs) play a vital role in activation of innate immunity in response to viral infection. Accordingly, viruses have evolved to employ various survival strategies to evade innate immune responses induced by type I IFNs. For example, hepatitis E virus (HEV) encoded papain-like cysteine protease (PCP) has been shown to inhibit IFN activation signaling by suppressing K63-linked de-ubiquitination of retinoic acid-inducible gene I (RIG-I) and TANK-binding kinase 1 (TBK1), thus effectively inhibiting down-stream activation of IFN signaling. In the present study, we demonstrated that HEV inhibits polyinosinic-polycytidylic acid (poly(I:C))-induced $IFN-{\beta}$ transcriptional induction. Moreover, by using reporter assay with individual HEV-encoded gene, we showed that HEV methyltransferase (MeT), a non-structural protein, significantly decreases RIG-I-induced $IFN-{\beta}$ induction and $NF-{\kappa}B$ signaling activities in a dose-dependent manner. Taken together, we report here that MeT, along with PCP, is responsible for the inhibition of RIG-I-induced activation of type I IFNs, expanding the list of HEV-encoded antagonists of the host innate immunity.

Expression of Inflammatory Cytokines by Beta-glucan in Macrophage Cell Line (대식세포주에서 베타-글루칸에 의한 염증성 사이토카인의 발현)

  • Kim, Mi-Jeong;Ryu, Han-Wook;Cho, Gye-Hyung;Kim, Ha-Won
    • YAKHAK HOEJI
    • /
    • v.52 no.1
    • /
    • pp.73-78
    • /
    • 2008
  • Immune system can protect host attacking from a variety of microorganism and virus through innate and adaptive immunities. The innate immune system can be activated by recognition of conserved carbohydrates on the cell surface of pathogen resulting in protection, immunity regulation and inflammation. Immunostimulating and anti-tumor ${\beta}$-glucan, major cell wall component of many fungi, could be recognized as pathogen associated molecular pattern (PAMP) by C-type lectin such as pathogen recognition receptor (PRR) of host innate immunity cells. In spite of many studies of basidiomycetes ${\beta}$-glucan on immunostimulation, little is known about the precise mechanism as molecular-level. Among C-type lectins, dectin-1 was cloned and reported as a ${\beta}$-glucan receptor. In this report, we demonstrated induction of cytokine gene transcription by Ganoderma lucidum ${\beta}$-glucan in the absence or presence of lipopolysaccharide (LPS) by RT-PCR analysis. The expression of murine dectin-1 (MD-1) on RAW264.7 macrophage by RT-PCR showing both the full length, 757 bp $(MD-1{\alpha})$ and alternative spliced form, 620 bp $(MD-1{\beta})$. Both $MD-1{\alpha}$ and $MD-1{\beta}$ mRNAs were induced by ${\beta $-glucan both in the absence and presence of LPS. To explore expression of inflammatory cytokines by ${\beta}$-glucan, RAW264.7 cells were treated with ${\beta}$-glucan for 12 hours. As a result, the expressions of IL-1 IL-6, IL-l0 and $TNF-{\alpha}$ were increased by ${\beta}$-glucan treatment in a dose-dependent fashion. From these results, ${\beta}$-glucan induced transcriptions of dectin-1 and immune activating cytokine genes, indicating induction of immune allertness by expressing dectin-1 and secreting inflammatory cytokines.

The Role of Transglutaminase in Double-stranded DNA-Triggered Antiviral Innate Immune Response

  • Yoo, Jae-Wook;Hong, Sun-Woo;Bose, Shambhunath;Kim, Ho-Jun;Kim, Soo-Youl;Kim, So-Youn;Lee, Dong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3893-3898
    • /
    • 2011
  • Cellular uptake of double-stranded DNA (dsDNA) triggers strong innate immune responses via activation of NF-${\kappa}B$ transcription factor. However, the detailed mechanism of dsDNA-mediated innate immune response remains yet to be elucidated. Here, we show that the expression of tazarotene-induced gene 3 (TIG3) is dramatically induced by dsDNA stimulation, and the siRNA-mediated down-regulation of TIG3 mRNA results in significant suppression of dsDNA-triggered cytokine expression. Because TIG3 has been previously shown to physically interact with transglutaminase (TG) 1 to activate TG activity, and TG2 has been shown to induce NF-${\kappa}B$ activity by inducing $I{\kappa}B{\alpha}$ polymerization, we tested whether TG also plays a role in dsDNA-mediated innate immune response. Pre-treatment of TG inhibitors dramatically reduces dsDNA-triggered cytokine induction. We also show that, in HeLa cells, TG2 is the major TG, and TIG3 physically interacts with TG2. Combined together, our results suggest a novel mechanism of dsDNA-triggered innate immune response which is critically dependent on TIG3 and TG2.

Expression of Various Pattern Recognition Receptors in Gingival Epithelial Cells

  • Shin, Ji-Eun;Ji, Suk;Choi, Young-Nim
    • International Journal of Oral Biology
    • /
    • v.33 no.3
    • /
    • pp.77-82
    • /
    • 2008
  • Innate immune response is initiated by the recognition of unique microbial molecular patterns through pattern recognition receptors (PRRs). The purpose of this study is to dissect the expression of various PRRs in gingival epithelial cells of differentiated versus undifferentiated states. Differentiation of immortalized human gingival epithelial HOK-16B cells was induced by culture in the presence of high $Ca^{2+}$ at increased cell density. The expression levels of various PRRs in HOK-16B cells were examined by realtime reverse transcription polymerase chain reaction (RTPCR) and flow cytometry. In addition, the expression of human beta defensins (HBDs) was examined by real time RT-PCR and the amounts of secreted cytokines were measured by enzyme linked immunosorbent assay. In undifferentiated HOK-16B cells, NACHT-LRR-PYDcontaining protein (NALP) 2 was expressed most abundantly, and toll like receptor (TLR) 2, TLR4, nucleotide-binding oligomerization domain (NOD) 1, and NOD2 were expressed in substantial levels. However, TLR3, TLR7, TLR8, TLR9, ICE protease-activating factor (IPAF), and NALP6 were hardly expressed. In differentiated cells, the levels of NOD2, NALP2, and TLR4 were different from those in undifferentiated cells at RNA but not at protein levels. Interestingly, differentiated cells expressed the increased levels of HBD-1 and -3 but secreted reduced amount of IL-8. In conclusion, the repertoire of PRRs expressed by gingival epithelial cells is limited, and undifferentiated and differentiated cells express similar levels of PRRs.