• 제목/요약/키워드: Innate Immunity

검색결과 371건 처리시간 0.037초

MicroRNA-127 promotes antimicrobial ability in porcine alveolar macrophages via S1PR3/TLR signaling pathway

  • Honglei Zhou;Yujia Qian;Jing Liu
    • Journal of Veterinary Science
    • /
    • 제24권2호
    • /
    • pp.20.1-20.13
    • /
    • 2023
  • Background: As Actinobacillus pleuropneumonniae (APP) infection causes considerable losses in the pig industry, there is a growing need to develop effective therapeutic interventions that leverage host immune defense mechanisms to combat these pathogens. Objectives: To demonstrate the role of microRNA (miR)-127 in controlling bacterial infection against APP. Moreover, to investigate a signaling pathway in macrophages that controls the production of anti-microbial peptides. Methods: Firstly, we evaluated the effect of miR-127 on APP-infected pigs by cell count/enzyme-linked immunosorbent assay (ELISA). Then the impact of miR-127 on immune cells was detected. The cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 were evaluated by ELISA. The expression of cytokines (anti-microbial peptides [AMPs]) was assessed using quantitative polymerase chain reaction. The expression level of IL-6, TNF-α and p-P65 were analyzed by western blot. The expression of p65 in the immune cells was investigated by immunofluorescence. Results: miR-127 showed a protective effect on APP-infected macrophage. Moreover, the protective effect might depend on its regulation of macrophage bactericidal activity and the generation of IL-22, IL-17 and AMPs by targeting sphingosine-1-phosphate receptor3 (SIPR3), the element involved in the Toll-like receptor (TLR) cascades. Conclusions: Together, we identify that miR-127 is a regulator of S1PR3 and then regulates TLR/nuclear factor-κB signaling in macrophages with anti-bacterial acticity, and it might be a potential target for treating inflammatory diseases caused by APP.

Inducible Nitric Oxide Synthase Mediates the Triglyceride-induced Death of THP-1 Monocytes

  • Byung Chul Jung;Hyun-Kyung Kim;Jaewon Lim;Sung Hoon Kim;Yoon Suk Kim
    • 대한의생명과학회지
    • /
    • 제29권2호
    • /
    • pp.66-74
    • /
    • 2023
  • Triglyceride (TG) accumulation can cause monocytic death and suppress innate immunity. However, the signaling pathways involved in this phenomenon are not fully understood. This study aimed to examine whether inducible nitric oxide synthase (iNOS) is involved in the TG-induced death of THP-1 monocytes. Results showed that iNOS was upregulated in TG-treated THP-1 monocytes, and iNOS inhibition blocked TG-induced monocytic death. In addition, TG-induced poly (ADP-ribose) polymerase (PARP) cleavage and caspase-3 and -7 activation were suppressed by iNOS inhibition. Furthermore, the expression of X-linked inhibitor of apoptosis protein (XIAP) and survivin, which inhibit caspase-3 and -7, was reduced in TG-treated THP-1 monocytes, but iNOS inhibition recovered the TG-induced downregulation of XIAP and survivin expression. Considering that TG-induced monocytic death is triggered by caspase2 and -8, we investigated whether caspase-2 and -8 are linked to the TG-induced expression of iNOS in THP-1 monocytes. When the activities of caspase-2 and -8 were inhibited by specific inhibitors, the TG-induced upregulation of iNOS and downregulation of XIAP and survivin were restored in THP-1 monocytes. These results suggest that TG-induced monocytic death is mediated by the caspase-2/caspase-8/iNOS/XIAP and survivin/executioner caspase/PARP pathways.

Primary Immunodeficiencies in Children Initially Admitted with Gastrointestinal/Liver Manifestations

  • Murat Cakir ;Nalan Yakici ;Elif Sag ;Gulay Kaya ;Aysenur Bahadir;Alper Han Cebi ;Fazil Orhan
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제26권4호
    • /
    • pp.201-212
    • /
    • 2023
  • Purpose: The gastrointestinal system is the most commonly affected organ, followed by the lungs, in patients with primary immunodeficiency disease (PID). Hence, it is common for children with PIDs to present with gastrointestinal symptoms. We aimed to analyze the clinical and histopathological findings of patients who were initially admitted to pediatric gastroenterology/hepatology clinics and subsequently diagnosed with PIDs to identify the clinical clues for PIDs. Methods: The demographic, laboratory, and histopathological findings, treatment modality, and outcomes of patients initially admitted to the pediatric gastroenterology/hepatology unit and subsequently diagnosed with PIDs were recorded. Results: The study included 24 patients (58.3% male; median age [range]: 29 [0.5-204] months). Common clinical presentations included chronic diarrhea (n=8), colitis (n=6), acute hepatitis (n=4), and acute liver failure (n=2). The association of autoimmune diseases, development of malignant diseases, and severe progression of viral diseases was observed in 20.8%, 8.3%, and 16.6% of the patients, respectively. Antibody deficiency was predominantly diagnosed in 29.2% of patients, combined immunodeficiency in 20.8%, immune dysregulation in 12.5%, defects in intrinsic and innate immunity in 4.2%, autoinflammatory disorders in 8.3%, and congenital defects of phagocytes in 4.2%. Five patients remained unclassified (20.8%). Conclusion: Patients with PIDs may initially experience gastrointestinal or liver problems. It is recommended that the association of autoimmune or malignant diseases or severe progression of viral diseases provide pediatric gastroenterologists some suspicion of PIDs. After screening using basic laboratory tests, genetic analysis is mandatory for a definitive diagnosis.

Subcutaneous Streptococcus dysgalactiae GAPDH vaccine in mice induces a proficient innate immune response

  • Ran An;Yongli Guo;Mingchun Gao;Junwei Wang
    • Journal of Veterinary Science
    • /
    • 제24권5호
    • /
    • pp.72.1-72.16
    • /
    • 2023
  • Background: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on the surface of Streptococcus dysgalactiae, coded with gapC, is a glycolytic enzyme that was reported to be a moonlighting protein and virulence factor. Objective: This study assessed GAPDH as a potential immunization candidate protein to prevent streptococcus infections. Methods: Mice were vaccinated subcutaneously with recombinant GAPDH and challenged with S. dysgalactiae in vivo. They were then evaluated using histological methods. rGAPDH of mouse bone marrow-derived dendritic cells (BMDCs) was evaluated using immunoblotting, reverse transcription quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay methods. Results: Vaccination with rGAPDH improved the survival rates and decreased the bacterial burdens in the mammary glands compared to the control group. The mechanism by which rGAPDH vaccination protects against S. dysgalactiae was investigated. In vitro experiments showed that rGAPDH boosted the generation of interleukin-10 and tumor necrosis factor-α. Treatment of BMDCs with TAK-242, a toll-like receptor 4 inhibitor, or C29, a toll-like receptor 2 inhibitor, reduced cytokines substantially, suggesting that rGAPDH may be a potential ligand for both TLR2 and TLR4. Subsequent investigations showed that rGAPDH may activate the phosphorylation of MAPKs and nuclear factor-κB. Conclusions: GAPDH is a promising immunization candidate protein for targeting virulence and enhancing immune-mediated protection. Further investigations are warranted to understand the mechanisms underlying the activation of BMDCs by rGAPDH in a TLR2- and TLR4-dependent manner and the regulation of inflammatory cytokines contributing to mastitis pathogenesis.

Maqui Berry Extract Activates Dendritic Cells Maturation by Increasing the Levels of Co-stimulatory Molecules and IL-12 Production

  • Ye Eun Lim;Inae Jung;Mi Eun Kim;Jun Sik Lee
    • 통합자연과학논문집
    • /
    • 제17권2호
    • /
    • pp.59-65
    • /
    • 2024
  • Dendritic cells play a very important role in the immune response as antigen-presenting cells that are critical for initiating both innate and acquired immunity. They recognize, process and present foreign antigens to other key immune cells to trigger and regulate the immune response. The ability to activate these dendritic cells can be used as a treatment for various immune diseases. Maqui berry has been reported to have anticancer, antibacterial and anti-inflammatory properties. However, its effect on the activity of dendritic cells has not been studied. In this study, we investigated the efficacy of maqui berry extract in modulating dendritic cell activity. Treatment of dendritic cells with maqui berry extract induced the costimulatory molecules CD80, CD86, and MHC class I and II in a concentration-dependent manner. Furthermore, the antigen-presenting capacity of dendritic cells was inhibited, which confirms their ability to present antigens, and the production of Interleukin (IL)-12, which is important for dendritic cell activity, was increased. These results indicated that Maqui berry extract activates dendritic cells maturation by inducing the production of co-stimulatory molecules and IL-12. These results suggest that maqui berry extract may act as an effective adjuvant to enhance dendritic cell-based immune responses.

Construction of nervous necrosis virus (NNV) genome-based DNA replicon vectors for the delivery of foreign antigens

  • Jeong In Yang;Ki Hong Kim
    • 한국어병학회지
    • /
    • 제37권1호
    • /
    • pp.1-8
    • /
    • 2024
  • The advantages of replicon vectors of RNA viruses include a high ability to stimulate innate immunity and exponential amplification of target mRNA leading to high expression of foreign antigens. The present study aimed to construct a DNA-layered nervous necrosis virus (NNV) replicon vector system in which the capsid protein gene was replaced with a foreign antigen gene and to compare the efficiency of foreign antigen expression between the conventional DNA vaccine vector and the present replicon vector. We presented the first report of a nodavirus DNA replicon-based foreign antigen expression system. Instead of a two-vector system, we devised a one-vector system containing both an NNV RNA-dependent RNA polymerase cassette and a foreign antigen-expressing cassette. This single-vector approach circumvents the issue of low foreign protein expression associated with the low co-transfection efficiency of a two-vector system. Cells transfected with a vector harboring hammerhead ribozyme-fused RNA1 and RNA2 (with the capsid gene ORF replaced with VHSV glycoprotein ORF) exhibited significantly higher transcription of the VHSV glycoprotein gene compared to cells transfected with either a vector without hammerhead ribozyme or a conventional DNA vaccine vector expressing the VHSV glycoprotein. Furthermore, the transcription level of the VHSV glycoprotein in cells transfected with a vector harboring hammerhead ribozyme-fused RNA1 and RNA2 showed a significant increase over time. These results suggest that NNV genome-based DNA replicon vectors have the potential to induce stronger and longer expression of target antigens compared to conventional DNA vaccine vectors.

NLRC4 Inflammasome-Mediated Regulation of Eosinophilic Functions

  • Ilgin Akkaya;Ece Oylumlu;Irem Ozel;Goksu Uzel;Lubeyne Durmus;Ceren Ciraci
    • IMMUNE NETWORK
    • /
    • 제21권6호
    • /
    • pp.42.1-42.20
    • /
    • 2021
  • Eosinophils play critical roles in the maintenance of homeostasis in innate and adaptive immunity. Although primarily known for their roles in parasitic infections and the development of Th2 cell responses, eosinophils also play complex roles in other immune responses ranging from anti-inflammation to defense against viral and bacterial infections. However, the contributions of pattern recognition receptors in general, and NOD-like receptors (NLRs) in particular, to eosinophil involvement in these immune responses remain relatively underappreciated. Our in vivo studies demonstrated that NLRC4 deficient mice had a decreased number of eosinophils and impaired Th2 responses after induction of an allergic airway disease model. Our in vitro data, utilizing human eosinophilic EoL-1 cells, suggested that TLR2 induction markedly induced pro-inflammatory responses and inflammasome forming NLRC4 and NLRP3. Moreover, activation by their specific ligands resulted in caspase-1 cleavage and mature IL-1β secretion. Interestingly, Th2 responses such as secretion of IL-5 and IL-13 decreased after transfection of EoL-1 cells with short interfering RNAs targeting human NLRC4. Specific induction of NLRC4 with PAM3CSK4 and flagellin upregulated the expression of IL-5 receptor and expression of Fc epsilon receptors (FcεR1α, FcεR2). Strikingly, activation of the NLRC4 inflammasome also promoted expression of the costimulatory receptor CD80 as well as expression of immunoregulatory receptors PD-L1 and Siglec-8. Concomitant with NLRC4 upregulation, we found an increase in expression and activation of matrix metalloproteinase (MMP)-9, but not MMP-2. Collectively, our results present new potential roles of NLRC4 in mediating a variety of eosinopilic functions.

Heterogeneity of Human γδ T Cells and Their Role in Cancer Immunity

  • Hye Won Lee;Yun Shin Chung;Tae Jin Kim
    • IMMUNE NETWORK
    • /
    • 제20권1호
    • /
    • pp.5.1-5.15
    • /
    • 2020
  • The γδ T cells are unconventional lymphocytes that function in both innate and adaptive immune responses against various intracellular and infectious stresses. The γδ T cells can be exploited as cancer-killing effector cells since γδ TCRs recognize MHC-like molecules and growth factor receptors that are upregulated in cancer cells, and γδ T cells can differentiate into cytotoxic effector cells. However, γδ T cells may also promote tumor progression by secreting IL-17 or other cytokines. Therefore, it is essential to understand how the differentiation and homeostasis of γδ T cells are regulated and whether distinct γδ T cell subsets have different functions. Human γδ T cells are classified into Vδ2 and non-Vδ2 γδ T cells. The majority of Vδ2 γδ T cells are Vγ9δ2 T cells that recognize pyrophosphorylated isoprenoids generated by the dysregulated mevalonate pathway. In contrast, Vδ1 T cells expand from initially diverse TCR repertoire in patients with infectious diseases and cancers. The ligands of Vδ1 T cells are diverse and include the growth factor receptors such as endothelial protein C receptor. Both Vδ1 and Vδ2 γδ T cells are implicated to have immunotherapeutic potentials for cancers, but the detailed elucidation of the distinct characteristics of 2 populations will be required to enhance the immunotherapeutic potential of γδ T cells. Here, we summarize recent progress regarding cancer immunology of human γδ T cells, including their development, heterogeneity, and plasticity, the putative mechanisms underlying ligand recognition and activation, and their dual effects on tumor progression in the tumor microenvironment.

심한 Respiratory Syncytial Virus 감염증과 선천성 면역에 관련된 유전적 소인에 관한 연구 : Mannose Binding Lectin 유전자 다형성 (Innate Immunity and Genetic Susceptibility to Severe Respiratory Syncytial Virus Infection : Lack of an Association with Mannose Binding Lectin Gene Polymorphism)

  • 최은화;김희섭;윤보영;최승은;나송이;김동호;박기원;이환종
    • Pediatric Infection and Vaccine
    • /
    • 제13권1호
    • /
    • pp.63-70
    • /
    • 2006
  • 목 적 : 본 연구는 어린 연령의 소아에서 선천성 면역력의 중요한 인자인 Mannose Binding Lectin(MBL2) 유전자의 다형성 및 일배체형의 분포를 심한 respiratory syncytial virus(RSV) 감염증 환자군과 정상대조군에서 분석함으로써, MBL2 유전자의 다양성이 소아 RSV 감염증의 발생과 예후에 기여하는지를 밝히고자 하였다. 방 법 : 1993년부터 2000년까지 7년 동안 서울대학교 어린이병원 소아과에서 RSV 감염증으로 치료받은 심한 RSV 감염증 환아 99명을 환자군, 건강한 성인 224명을 대조군으로 선정하였다. 유전형 분석은 선천성 면역의 중추적 역할을 하는 MBL2 유전자의 promoter -221 X/Y와 exon 1의 구조 변이의 분포를 환자대조군에서 비교하여 분석하였다. 결 과 : 환자군 99명의 중앙 연령은 9.5개월로, 6개월 미만 48명(49%), 6~24개월 사이 39명(39%), 그리고 24개월 이상이 12명(12%)이었다. 남아는 58명(59%)이었다. 환자군에서 MBL2 대립유전자 B다형성의 빈도는 유전형 AA 60(61%), 이형접합 AB 34(34%), 그리고 유전형 BB 5(5%)로 나타났다. 환자군의 promoter -221 X/Y 유전형의 분포는 유전형 YY 84(85%), 이형접합 XY 15(15%)이었으며, 유전형 XX는 발견되지 않았다. Exon 1의 구조 변이와 promoter 변이 모두 환자군과 대조군간에 차이가 없었다. MBL2 일배체형의 분포에도 두 군간에 차이가 없었다. 결 론 : 본 연구 결과, 한국인 소아에서 MBL2 유전자의 다형성과 일배체형이 심한 RSV 감염증에 기여하는 예후 인자임을 밝히지 못하였다. 향후 전향적으로 수집한 더 많은 수의 환자군과 적절한 대조군을 통한 연구가 시행되어야 할 것으로 생각한다.

  • PDF

참담치(Mytilus coruscus) 혈구(hemocyte) 유래 항균 펩타이드 mytilin B의 정제 및 특성 분석 (Mytilin B, an Antimicrobial Peptide from the Hemocyte of the Hard-shelled Mussel, Mytilus coruscus : Isolation, Purification, and Characterization)

  • 이민정;오륜경;김영옥;남보혜;공희정;김주원;박중연;서정길;김동균
    • 생명과학회지
    • /
    • 제28권11호
    • /
    • pp.1301-1315
    • /
    • 2018
  • 참담치(Mytilus coruscus)의 혈구 유래의 항균 펩타이드를 역상 column들을 사용한 reversed-phase high-performance liquid chromatography (RP-HPLC)로 분리 및 정제하였다. 정제된 펩타이드는 matrix-assisted laser desorption ionization time-of-flight mass spectrophotometer (MALDI-TOF/MS)를 통해 분자량이 4041.866 Da으로 밝혀졌으며 Edman degradation법을 통해 25개의 N-말단 서열을 확보하였다. 이는 참담치의 mytilin B precursor와 100%, mytilin 8 precursor, mytilin 4 precursor와 96% 일치하였다. 또한 103개의 아미노산 서열을 코딩하고 있는 312 bp의 open-reading frame (ORF)을 밝혔으며 이는 참담치의 mytilin B precursor와 100% 일치하였다. 밝혀진 분자량과 아미노산 서열을 바탕으로 C-말단 alanine 잔기의 유무에 따라 2개의 펩타이드를 합성하였으며 이는 mytilin B1과 B2라고 명명하였다. 이들은 그람 양성 균주 Bacillus cereus, Streptococcus parauberis [minimal effective concentrations, MECs $41.6-89.7{\mu}g/ml$], 그람 음성 균주 Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Providencia stuartii, Pseudomonas aeruginosa, Vibrio ichthyoenteri [MECs $7.4-39.5{\mu}g/ml$] 그리고 진균류인 Candida albicans [MECs $26.0-31.8{\mu}g/ml$]에 항균활성을 나타냈다. 본 연구 결과, 참담치 혈구 유래 mytilin B1과 mytilin B2는 넓은 항균 스펙트럼을 가지고 열과 염분에 대한 안정성이 높으며 용혈현상과 세포독성은 나타나지 않았다. 이러한 특성은 기능성 사료첨가제 및 항생제 대체제로써 충분히 안정적인 역할을 할 뿐만 아니라 추후 mytilin의 구조적 중요성과 참담치의 면역학적 측면에서 다양한 자료를 제시할 것으로 사료된다.