• 제목/요약/키워드: Innate Immunity

검색결과 376건 처리시간 0.026초

Differential expression of microRNAs in the saliva of patients with aggressive periodontitis: a pilot study of potential biomarkers for aggressive periodontitis

  • Lee, Nam-Hun;Lee, Eunhye;Kim, Young-Sung;Kim, Won-Kyung;Lee, Young-Kyoo;Kim, Su-Hwan
    • Journal of Periodontal and Implant Science
    • /
    • 제50권5호
    • /
    • pp.281-290
    • /
    • 2020
  • Purpose: The aim of this study was to compare microRNA (miRNA) gene expression in saliva using miRNA polymerase chain reaction (PCR) arrays in healthy and aggressive periodontitis (AP) patients. Methods: PCR arrays of 84 miRNAs related to the human inflammatory response and autoimmunity from the saliva samples of 4 patients with AP and 4 healthy controls were performed. The functions and diseases related to the miRNAs were obtained using TAM 2.0. Experimentally validated targets of differentially expressed miRNAs were obtained from mirTarBase. Gene ontology terms and pathways were analyzed using ConsensusPathDB. Results: Four downregulated miRNAs (hsa-let-7a-5p, hsa-let-7f-5p, hsa-miR-181b-5p, and hsa-miR-23b-3p) were identified in patients with AP. These miRNAs are associated with cell death and innate immunity, and they target genes associated with osteoclast development and function. Conclusions: This study is the first analysis of miRNAs in the saliva of patients with AP. Identifying discriminatory human salivary miRNA biomarkers reflective of periodontal disease in a non-invasive screening assay is crucial for the development of salivary diagnostics. These data provide a first step towards the discovery of key salivary miRNA biomarkers for AP.

UWB 기반의 WPAN에서 채널 상태를 고려한 다중 홉 중계 방식의 MAC 프로토콜 (Multi-hop Packet Relay MAC Protocol Considering Channel Conditions in UWB-based WPANs)

  • 왕위동;서창근;정순규;유상조
    • 한국통신학회논문지
    • /
    • 제30권11B호
    • /
    • pp.792-803
    • /
    • 2005
  • 초광대역 무선통신 (UWB) 기술은 그 자체가 가지고 있는 고속, 저전력, 다중 경로 환경의 강인함 등의 특성으로 고속형 WPAN에 적합한 기술로 평가받고 있다. 본 논문에서는 UWB 기술을 사용하는 WPAN 환경에서 전력 소비를 효율적으로 분산시킬 수 있는 MAC 계층에서의 다중 홉 프레임 중계 방식을 새롭게 제안한다. 본 논문에서는 적절한 중계 단말을 선택하기 위해 PAPSF (Power Aware Path Status Factor)를 정의한다. PAPSF는 SINR과 각 단말에서의 송신 전력 정보로부터 결정 할 수 있다. 본 논문에서 제안하는 방법은 에드 혹 라우팅 프로토콜의 특성으로 인하여 쉽게 중계 단말로 사용될 가능성이 높은 PNC를 통한 프레임 중계 방식과 비교할 때 더 높은 데이터 처리량을 가지며, 전체 전력 소모를 감소시킬 수 있다. 또한 전력 소모를 PNC 뿐만 아니라 피코넷에 존재하는 다른 단말들로 쉽게 분산시킬 수 있어 PNC의 급격한 배터리 소모를 방지하고, 빈번한 PNC 변경을 막을 수 있다.

Mouse neutrophils express functional umami taste receptor T1R1/T1R3

  • Lee, NaHye;Jung, Young Su;Lee, Ha Young;Kang, NaNa;Park, Yoo Jung;Hwang, Jae Sam;Bahk, Young Yil;Koo, JaeHyung;Bae, Yoe-Sik
    • BMB Reports
    • /
    • 제47권11호
    • /
    • pp.649-654
    • /
    • 2014
  • Neutrophils play an important role in the initiation of innate immunity against infection and injury. Although many different types of G-protein coupled receptors are functionally expressed in neutrophils, no reports have demonstrated functional expression of umami taste receptor in these cells. We observed that mouse neutrophils express the umami taste receptor T1R1/T1R3 through RNA sequencing and quantitative RT-PCR analysis. Stimulation of mouse neutrophils with L-alanine or L-serine, which are ligands for the umami taste receptor, elicited not only ERK or p38 MAPK phosphorylation but also chemotactic migration. Moreover, addition of L-alanine or L-serine markedly reduced the production of several cytokines including $TNF-{\alpha}$ induced by lipopoly-saccharide (LPS) through inhibition of $NF-{\kappa}B$ activity or STAT3 phosphorylation in neutrophils. Our findings demonstrate that neutrophils express the umami taste receptor, through which tastants stimulate neutrophils, resulting in chemotactic migration, and attenuation of LPS-induced inflammatory response.

Alleviation of Salt Stress by Enterobacter sp. EJ01 in Tomato and Arabidopsis Is Accompanied by Up-Regulation of Conserved Salinity Responsive Factors in Plants

  • Kim, Kangmin;Jang, Ye-Jin;Lee, Sang-Myeong;Oh, Byung-Taek;Chae, Jong-Chan;Lee, Kui-Jae
    • Molecules and Cells
    • /
    • 제37권2호
    • /
    • pp.109-117
    • /
    • 2014
  • Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways.

Suppression of the TRIF-dependent signaling pathway of toll-like receptors by (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1-yl)-2-butenoate

  • Park, Se-Jeong;Park, Hye-Jeong;Kim, Soo-Jung;Shin, Hwa-Jeong;Min, In-Soon;Koh, Kwang-Oh;Kim, Dae-Young;Youn, Hyung-Sun
    • BMB Reports
    • /
    • 제44권7호
    • /
    • pp.468-472
    • /
    • 2011
  • Toll-like receptors (TLRs) are pattern recognition receptors that recognize molecular structures derived from microbes and initiate innate immunity. TLRs have two downstream signaling pathways, the MyD88- and TRIF-dependent pathways. Dysregulated activation of TLRs is closely linked to increased risk of many chronic diseases. Previously, we synthesized fumaryl pyrrolidinone, (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1-yl)-2-butenoate (IPOP), which contains a fumaric acid isopropyl ester and pyrrolidinone, and demonstrated that it inhibits the activation of nuclear factor kappa B by inhibiting the MyD88-dependent pathway of TLRs. However, the effect of IPOP on the TRIF-dependent pathway remains unknown. Here, we report the effect of IPOP on signal transduction via the TRIF-dependent pathway of TLRs. IPOP inhibited lipopolysaccharide- or polyinosinic-polycytidylic acidinduced interferon regulatory factor 3 activation, as well as interferon-inducible genes such as interferon inducible protein-10. These results suggest that IPOP can modulate the TRIF-dependent signaling pathway of TLRs, leading to decreased inflammatory gene expression.

Towards the Application of Human Defensins as Antivirals

  • Park, Mee Sook;Kim, Jin Il;Lee, Ilseob;Park, Sehee;Bae, Joon-Yong;Park, Man-Seong
    • Biomolecules & Therapeutics
    • /
    • 제26권3호
    • /
    • pp.242-254
    • /
    • 2018
  • Defensins are antimicrobial peptides that participate in the innate immunity of hosts. Humans constitutively and/or inducibly express ${\alpha}$- and ${\beta}$-defensins, which are known for their antiviral and antibacterial activities. This review describes the application of human defensins. We discuss the extant experimental results, limited though they are, to consider the potential applicability of human defensins as antiviral agents. Given their antiviral effects, we propose that basic research be conducted on human defensins that focuses on RNA viruses, such as human immunodeficiency virus (HIV), influenza A virus (IAV), respiratory syncytial virus (RSV), and dengue virus (DENV), which are considered serious human pathogens but have posed huge challenges for vaccine development for different reasons. Concerning the prophylactic and therapeutic applications of defensins, we then discuss the applicability of human defensins as antivirals that has been demonstrated in reports using animal models. Finally, we discuss the potential adjuvant-like activity of human defensins and propose an exploration of the 'defensin vaccine' concept to prime the body with a controlled supply of human defensins. In sum, we suggest a conceptual framework to achieve the practical application of human defensins to combat viral infections.

Interaction between Leptospiral Lipopolysaccharide and Toll-like Receptor 2 in Pig Fibroblast Cell Line, and Inhibitory Effect of Antibody against Leptospiral Lipopolysaccharide on Interaction

  • Guo, Yijie;Fukuda, Tomokazu;Nakamura, Shuichi;Bai, Lanlan;Xu, Jun;Kuroda, Kengo;Tomioka, Rintaro;Yoneyama, Hiroshi;Isogai, Emiko
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권2호
    • /
    • pp.273-279
    • /
    • 2015
  • Leptospiral lipopolysaccharide (L-LPS) has shown potency in activating toll-like receptor 2 (TLR2) in pig fibroblasts (PEFs_NCC1), and causes the expression of proinflammatory cytokines. However, the stimulation by L-LPS was weak eliciting the function of TLR2 sufficiently in pig innate immunity responses during Leptospira infection. In this study, the immune response of pig embryonic fibroblast cell line (PEFs_SV40) was investigated and was found to be the high immune response, thus TLR2 is the predominate receptor of L-LPS in pig cells. Further, we found a strategy using the antibody against L-LPS, to prevent L-LPS interaction with TLR2 in pig cells which could impact on immune activation.

Possible Presence of an Interleukin-6-Like Molecule in the Immunized Bombyx mori L. (Lepidoptera)

  • Kim, Iksoo;Lee, Young-Shin;Lee, Joon-Ha;Kim, Sang-Hyun;Kang, Pil-Don;Lee, In-Hee;Kim, Jin-Won;Lee, Heui-Sam;Kang, Seok-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제7권2호
    • /
    • pp.165-173
    • /
    • 2003
  • Cytokines represent an essential part of the innate immune response in mammals. Recently, several studies have reported the presence of cytokine-like activities and molecules in the invertebrates such as echinoderms, tunicates, mollusks and insects. In our serial study, we investigated presence of cytokines in the silkworm, Bombyx mori, infected with several immune inducers. Western blotting analysis using rabbit anti-human cytokines showed the presence of IL-6-like molecule in the hemolymph collected at 8 and 24 hrs after infection with peptidoglycan and oligodeoxynucleotide, and the molecular weight of the proteins was ∼45 kDa. We attempted to isolate the molecule by gel permeation HPLC, anion exchange chromatography, ultra centrifugation, and immuno-dot-blot assay, but until now the effort was not much successful yet. It, however, does not appear that the IL-6-like molecule in the silkworm larvae is a mere experimental artifact happened by Western blotting analysis. Instead, further experiment on this subject probably will provide us more fruitful result as detected in other invertebrates including insects.

Protein-protein Interaction Network Analyses for Elucidating the Roles of LOXL2-delta72 in Esophageal Squamous Cell Carcinoma

  • Wu, Bing-Li;Zou, Hai-Ying;Lv, Guo-Qing;Du, Ze-Peng;Wu, Jian-Yi;Zhang, Pi-Xian;Xu, Li-Yan;Li, En-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.2345-2351
    • /
    • 2014
  • Lysyl oxidase-like 2 (LOXL2), a member of the lysyl oxidase (LOX) family, is a copper-dependent enzyme that catalyzes oxidative deamination of lysine residues on protein substrates. LOXL2 was found to be overexpressed in esophageal squamous cell carcinoma (ESCC) in our previous research. We later identified a LOXL2 splicing variant LOXL2-delta72 and we overexpressed LOXL2-delta72 and its wild type counterpart in ESCC cells following microarray analyses. First, the differentially expressed genes (DEGs) of LOXL2 and LOXL2-delta72 compared to empty plasmid were applied to generate protein-protein interaction (PPI) sub-networks. Comparison of these two sub-networks showed hundreds of different proteins. To reveal the potential specific roles of LOXL2- delta72 compared to its wild type, the DEGs of LOXL2-delta72 vs LOXL2 were also applied to construct a PPI sub-network which was annotated by Gene Ontology. The functional annotation map indicated the third PPI sub-network involved hundreds of GO terms, such as "cell cycle arrest", "G1/S transition of mitotic cell cycle", "interphase", "cell-matrix adhesion" and "cell-substrate adhesion", as well as significant "immunity" related terms, such as "innate immune response", "regulation of defense response" and "Toll signaling pathway". These results provide important clues for experimental identification of the specific biological roles and molecular mechanisms of LOXL2-delta72. This study also provided a work flow to test the different roles of a splicing variant with high-throughput data.

Adenosine derived from Staphylococcus aureus-engulfed macrophages functions as a potent stimulant for the induction of inflammatory cytokines in mast cells

  • Ma, Ying Jie;Kim, Chan-Hee;Ryu, Kyoung-Hwa;Kim, Min-Su;So, Young-In;Lee, Kong-Joo;Garred, Peter;Lee, Bok-Luel
    • BMB Reports
    • /
    • 제44권5호
    • /
    • pp.335-340
    • /
    • 2011
  • In this study, we attempted to isolate novel mast cell-stimulating molecules from Staphylococcus aureus. Water-soluble extract of S. aureus cell lysate strongly induced human interleukin-8 in human mast cell line-1 and mouse interleukin-6 in mouse bone marrow-derived mast cells. The active molecule was purified to homogeneity through a $C_{18}$ reverse phase HPLC column. By determination of its structure by MALDITOF and $^1H$- and $^{13}C$-NMR, adenosine was revealed to be responsible for the observed cytokine induction activities. Further studies using 8-sulfophenyl theophylline, a selective adenosine receptor blocker, verified that purified adenosine can induce interleukin-8 production via adenosine receptors on mast cells. Moreover, adenosine was purified from S. aureus-engulfed RAW264.7 cells, a murine macrophage cell line, used to induce phagocytosis of S. aureus. These results show a novel view of the source of exogenous adenosine in vivo and provide a mechanistic link between inflammatory disease and bacterial infection.