• 제목/요약/키워드: Inlet temperature

검색결과 1,512건 처리시간 0.023초

유동방향의 열전도가 전열면의 성능에 미치는 영향 (Effects of longitudinal conduction on the performance of heat transfer surfaces)

  • 박병규;홍택;박상희
    • 설비공학논문집
    • /
    • 제11권5호
    • /
    • pp.561-569
    • /
    • 1999
  • The effects of longitudinal heat conduction on the performance of heat transfer surfaces are investigated by using a single-blow method. In the transient testing method for determining the heat transfer characteristics, exponential inlet temperature variations are made by using screen-mesh heater with small time constant and low frontal velocities of the test section, and the experimentally determined inlet temperature profile is used as the inlet fluid temperature condition. The effects of longitudinal heat conduction are negligible only if $\gamma^\act<0.05\;and \;N_{tu}\le3$ and should be considered if $N_{tu}\le3$ The test results ate compared with the existing theoretical and experimental data and the validity of this technique is confirmed by the good agreement.

  • PDF

부하변화에 따른 hot-gas 바이패스 방식별 성능 비교 (Performance Comparison of Hot-gas Bypass Types with the Variation of Refrigeration Load)

  • 백승문;윤정인;손창효;허정호
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.48-54
    • /
    • 2014
  • In this paper, three refrigeration systems bypassing hot-gas to compressor outlet, compressor and condenser outlet and evaporator inlet are theoretically compared to offer basic design data for performance depending on cooling load using a HYSYS program. The main results are summarized as follows : First, the COP of third system is the highest. Next, the COP of second system is higher than first one. And, the temperature of compressor inlet of third system is constant for all cooling load. Compared to first and second system, the compressor inlet temperature of the first system is higher than second one for all cooling loads. From the above results, third system, which is bypassing hot-gas to evaporator inlet, is more advantageous when considering the precise temperature control and excellent performance of oil and water cooler of industrial machine.

터빈 냉각설계를 위한 터보팬 엔진의 성능해석 (Performance Analysis of Turbofan Engine for Turbine Cooling Design)

  • 김춘택;이동호;차봉준
    • 한국유체기계학회 논문집
    • /
    • 제15권5호
    • /
    • pp.27-31
    • /
    • 2012
  • Turbine inlet temperature is steadily increasing to achieve high specific thrust and efficiency of gas turbine engines. Turbine cooling technology is essential to increase turbine inlet temperature. For this study, a small or medium sized aircraft engine of 10,000 lbf class with the turbine inlet temperature of $1,400^{\circ}C$, the engine overall pressure ratio of 32.2, and the bypass ratio of 5 was set as the baseline model and its performance analysis was performed at the design point. The engine has the performance of 10,013 lbf thrust and the specific fuel consumption of 0.362 lbm/hr/lbf. The thrust and the specific fuel consumption of the baseline model were compared with those of similar class engines. Based on these results, the turbine design requirements were assigned. In addition, the parametric analysis of the engine, related to aerodynamic and cooling design of the high pressure turbine, was performed. Based on the baseline model engine, the influence of turbine inlet temperature, cooling flow ratio, and high pressure turbine efficiency variations on the engine performance was analyzed.

태양열 공기가열 집열기에 의한 난방 실내공간의 열유동 특성 해석 (Analysis on Characteristics of Thermal Flow for Heating Indoor Space by Air-heating Collector using Solar Heat)

  • 양영준
    • 한국산업융합학회 논문집
    • /
    • 제25권2_2호
    • /
    • pp.271-278
    • /
    • 2022
  • The solar energy has been widely used to reduce the fossil fuel and prevent the environmental pollution. The renewable energy including solar heat tends to spread due to carbon neutrality for main country of the world. Targets of solar collector are usually acquisitions of hot water or hot air. Especially, air-heating collector using solar heat is known as the technology for obtaining hot air. This study aims to investigate of characteristics of thermal flow when the hot air by air-heating collector using solar heat flows inside of indoor space. The thermal flow of heating indoor space was simulated using ANSYS-CFX program and thus the behaviors of hot air in indoor space were evaluated with standard k-𝜀 turbulence model. As the results, as the inlet velocity was increased, the behaviors of hot air became simple, and temperature range of 25~75℃ had almost no effect on behavior of flow. As the inlet temperature was increased, the temperature curve of indoor space from bottom to top was changed from linear to quadratic. Furthermore, it was confirmed that inlet velocity as well as inlet temperature also should be considered to heat indoor space equally by air-heating collector using solar heat.

분무열분해공정에 의한 인듐 산화물 나노 분말 제조에 미치는 반응인자들의 영향 (Effect of Reaction Factors on the Fabrication of Nano-Sized Indium Oxide Powder by Spray Pyrolysis Process)

  • 유재근
    • 한국분말재료학회지
    • /
    • 제11권6호
    • /
    • pp.493-502
    • /
    • 2004
  • In this study, nano-sized indium oxide powder with the average particle size below 100 nm is fab-ricated from the indium chloride solution by the spray pyrolysis process. The effects of the reaction temperature, the concentration of raw material solution and the inlet speed of solution on the properties of powder were studied. As the reaction temperature increased from 850 to $1000^{\circ}C$, the average particle size of produced powder increased from 30 to 100 nm, and microstructure became more solid, the particle size distribution was more irregular, the intensity of a XRD peak increased and specific surface area decreased. As the indium concentration of the raw material solution increased from 40 to 350 g/l, the average particle size of the powder gradually increased from 20 to 60 nm, yet the particle size distribution appeared more irregular, the intensity of a XRD peak increased and spe-cific surface area decreased. As the inlet speed of solution increased from 2 to 5 cc/min., the average particle size of the powder decreased and the particle size distribution became more homogeneous. In case of the inlet speed of 10 cc/min, the average particle size was larger and the particle size distribution was much irregular compared with the inlet speed of 5 cc/min. As the inlet speed of solution was 50 cc/min, the average particle size was smaller and microstructure of the powder was less solid compared with the inlet speed of 10 cc/min. The intensity of a XRD peak and the variation of specific area of the powder had the same tendency with the variation of the average par-ticle size.

SIMULATION OF THERMAL STRATIFICATION IN INLET NOZZLE OF STEAM GENERATOR

  • Ji, Joon-Suk;Youn, Bum-Su;Jeong, Hyun-Chul;Kim, Sang-Nyung
    • Nuclear Engineering and Technology
    • /
    • 제41권3호
    • /
    • pp.287-294
    • /
    • 2009
  • Due to thermal hydraulics phenomena, such as thermal stratification, various events occur to the parts of a nuclear power plant during their lifetimes: e.g. cracked and dislocated pipes and thermally fatigued, bent, and damaged supports. Due to the operational characteristics of the parts of the steam generator feedwater inlet horizontal pipe, thermal stratification takes place particularly frequently. However, the thermal stress due to thermal stratification at the steam generator feedwater inlet horizontal pipe was not reflected in the design stage of old plants(Kori Unit No.1, 2, 3 and 4, Yeonggwang Unit No. 1 and 2, and Uljin Unit No. 1 and 2; referred to as old-style power plants hereinafter). Accordingly, a verification experiment was performed for thermal stratification in the horizontal inlet nozzle steam generator of old-style plants. If thermal stratification occurred in the horizontal pipe of an old-style power plant, numerical analysis of the temperature distribution of the pipes and fluids was conducted. The temperature distributions were compared at the curved part of the pipe and the horizontal pipe before and after the installation of the improved thermal sleeves designed to alleviate thermal stress due to thermal stratification. The thermal stress reduction measure was proven effective at the steam generator inlet horizontal pipe and the curved part of the pipe.

입구 물온도와 열부하가 냉각탑의 팬동력에 미치는 영향 분석 (Effects of Inlet Water Temperature and Heat Load on Fan Power of Counter-Flow Wet Cooling Tower)

  • ;이근식
    • 대한기계학회논문집B
    • /
    • 제37권3호
    • /
    • pp.267-273
    • /
    • 2013
  • 막충진재(film fill)를 갖는 냉각탑용 팬의 효율적인 운전조건을 제시하기 위하여, Merkel의 이론을 바탕으로 한 종전의 최적 총연간비용 모델을 사용하여 입구 물온도와 열부하에 따른 최소팬동력을 구하는 프로그램이 새로이 개발되었으며, 냉각탑의 설계 맵이 본 연구로부터 제시되었다. 전형적인 예들을 통하여 본 프로그램의 타당성이 입증되었다. 주어진 열부하에서 이들 팬동력(z 축)-공기질량플럭스(x 축, 최소팬동력 존재)-입구물온도(y 축, 최소팬동력의 최대값 존재)의 3차원 그래프는 말안장 형상으로 나타났다. 최소팬동력들은 열부하에 따라 증가하였다. 따라서, '고온수 유입과 저유량의 공기로 작동' 될 때가 항상 최소팬동력 조건이 아니며, '주어진 입구물온도에 대하여 최소팬동력에 대응하는 최적의 공기질량플럭스가 (열부하와 무관하게) 존재한다'는 사실이 본 연구결과로부터 밝혀졌다.

LOP형 5패드 틸팅패드 저어널베어링의 압력 및 온도 특성에 관한 실험적 연구 (Experimental Study on the Characteristics of the Film Pressure and Temperature in a 5-Pad Tilting Pad Journal Bearing of LOP Type)

  • 하현천;양승헌;변형현
    • Tribology and Lubricants
    • /
    • 제14권1호
    • /
    • pp.7-13
    • /
    • 1998
  • The static characteristics of a five-pad tilting pad journal bearing of load on pad (LOP) type have been investigated experimentally under the different values of bearing load and shaft speed. The diameter and length of the bearing are 300.91 mrn and 149.8 mm, reslx;ctively. Circumferential distribution of the film pressure, film thickness, journal surface temperature and beating surface temperature are measured. A noticeable inlet pressure rise is observed at the entrance of each pad, especially the bottom pad. The inlet pressure is increased by the increase of shaft speed as well as bearing load. In the five-pad tilting pad joumal bearing of LOP type, almost all of beating load is being carried only by the bottom pad. The maximum bearing surface temperature is observed at near the minimum film thickness. It is observed that the metal temperature of the mid-plane is higher than that of the edge at the inlet region, while the metal temperature of the edge is higher than that of the mid-plane at the outlet region.

직접 접촉식 막증류 공정에서 담수 투과량 및 열효율 극대화를 위한 수치적 연구 (A Numerical Study for the Maximizing Water Vapor Flux and Thermal Efficiency in Direct Contact Membrane Distillation (DCMD) Process)

  • 김상훈;이정길;김우승
    • 멤브레인
    • /
    • 제22권5호
    • /
    • pp.369-380
    • /
    • 2012
  • 본 연구에서는 직접 접촉식 막증류 공정에서 운전인자에 따른 담수 투과량과 열효율을 예측하기 위해 열 및 물질전달 방정식을 이용하여 1차원 해석모델을 개발하였다. 이 해석모델의 타당성을 검증하기 위해 해석모델 결과와 기존 연구자들에 의해 수행된 실험 결과를 비교하였고 만족할 만한 결과를 얻었다. 이를 통해 DCMD 모듈에서 염수와 증류수의 입구온도 및 입구속도가 담수 투과량 및 열효율에 미치는 영향을 분석하였다. 그 결과 염수의 입구온도와 입구속도가 증류수의 입구온도와 입구속도보다 담수 투과량과 열효율 증가에 미치는 영향이 크기 때문에 지배적인 운전특성이라는 것을 알 수 있었다. 염수의 입구온도가 $60^{\circ}C$에서 $95^{\circ}C$로 증가할 때 담수 투과량이 21.22 $kg/m^2h$에서 71.26 $kg/m^2h$로 3.4배 증가하였고 열효율은 0.556에서 0.765로 37.5% 증가하였다. 한편, 염수의 입구속도가 60에서 300 m/h로 증가함에 따라 담수 투과량이 27.91 $kg/m^2h$에서 36.33 $kg/m^2h$로 30% 증가하였고 열효율은 0.6에서 0.646로 7.5% 증가함을 알 수 있었다.

가열원관군 주위를 유동하는 굴패각의 탈착과정에 대한 열 및 물질전달에 관한 연구 (Study on the Heat and Mass Transfer Characteristics of Oyster Shell Flowing through the Bundle of Heating Pipes)

  • 김명준
    • 동력기계공학회지
    • /
    • 제17권3호
    • /
    • pp.28-34
    • /
    • 2013
  • This study is experimentally performed for using the oyster shell as a desiccant in the fluidized bed with bundle of heating pipe. The test material is oyster shell from fishery wastes which can use without costs. The main parameters of experiment are inlet air temperature, velocity of inlet air and heat flux of heating pipes. Also the geometry of heating pipe is treated as important parameter. From this study, the effect of inlet air temperature and input heat flux have much affect to increase the heat and mass transfer. On the other hand, the effect of inlet air velocity has less affect to increase the heat and mass transfer. And it is clarified that the oyster shell has sufficient probability for using as a desiccant in air-conditioning system.