• Title/Summary/Keyword: Inlet shape

Search Result 362, Processing Time 0.052 seconds

Performance Characteristics Due to the Inflow Distortion near Hub in an Axial Flow Fan (축류 송풍기 허브측 불균일 유입유동 현상 및 성능 특성)

  • Jang, Choon-Man;Choi, Seung-Man;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.663-669
    • /
    • 2005
  • Performance characteristics of an axial flow fan having distorted inlet flow have been investigated using numerical analysis as well as experiment. Two kinds of hub-cap, round shape and right-angled front shape, are tested to investigate the effect of inlet flow distortion on the fan performance. In case of right-angled front shape, axisymmetric distorted inflow is induced by flow separation at the sharp edge of hub-cap, and the characteristics of the inflow depends on the distance between hub-cap and blade leading edge. Flow analysis of the blade passage is peformed by solving the three-dimensional Reynolds-averaged Navier-Stokes equations. numerical solutions are validated in comparison with experimental data measured by a five-hole probe downstream of the fan rotor. It is found from the numerical results that non-uniform axial inlet velocity profile near the hub results in the change of inlet flowangle. The changed inlet flow angle near the hub invokesa flow separation on the blade surfaces, thus deteriorating the fan efficiency. The effect of the distance between hub-cap and blade leading edge on the efficiency is also discussed.

  • PDF

A Study on the Noise Characteristics According to Bellmouth Inlet Shape (벨마우스 흡입구 형상에 따른 원심팬의 소음 특성에 관한 연구)

  • Lee, Hyun-Nam;Hong, Dong-Pyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.809-812
    • /
    • 2006
  • This article shows the study on the arresting sound occurrence due to the interaction of the centrifugal Fan and bellmouth suction flow with bellmouth height as variable. It has accomplished to measure of inlet noise and also to analysis suction pressure distribution through experiment and also using CFD. The main cause of sound occurrence was judged with the effect due to static pressure change of bellmouth surface.

  • PDF

Pressure and Flow Distribution in the Inlet Plenum of a Pebble Bed Modular Reactor (PBMR)

  • Ahmad, Imteyaz;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.244-249
    • /
    • 2005
  • Flow distribution and pressure drop analysis for an inlet plenum of a Pebble Bed Modular Reactor (PBMR) have been performed using Computational Fluid Dynamics. Three-dimensional Navier-Stokes equations have been solved in conjunction with $k-{\epsilon}$ model as a turbulence closure. Non-uniformity in flow distribution is assessed for the reference case and parametric studies have been performed for rising channels diameter, Reynolds number and angle between the inlet ports. Also, two different shapes of the inlet plenum namely, rectangular shape and oval shape, have been analysed. The relative flow mal-distribution parameter shows that the flow distribution in the rising channels for the reference case is strongly non-uniform. As the rising channels diameter decreases, the uniformity in the flow distribution as well as the pressure drop inside the inlet plenum increases. Reynolds number is found to have no effect on the flow distribution in the rising channels for both the shapes of the inlet plenum. The increase in angle between the inlet ports makes the flow distribution in the rising channels more uniform.

  • PDF

Control of Taper Shape in Micro-Hole Machining by Micro-EDM (방전 가공을 이용한 미세 구멍 가공 시 발생하는 테이퍼 형상의 제어)

  • Kim Dong Jun;Yi Sang Min;Lee Young Soo;Chu Chong Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.52-59
    • /
    • 2005
  • When a micro hole is machined by EDM with a cylindrical electrode, the hole diameter is different at the inlet and the outlet of the micro hole. The taper shape of the micro hole is caused by not only wear of the electrode but the eroded particles. The eroded particles cause secondary discharge during machining the micro hole. As a result, the diameter of the inlet becomes larger than that of the outlet. In this paper, a new method is proposed to reduce the difference in diameter between the inlet and the outlet of the hole. Observed was that the feed depth and machining time affect the formation of taper shape On this experimental basis, ultrasonic vibration was applied to reduce machining time, and capacitance was changed during machining to use the difference in discharging energy of different capacitances. Using the proposed method, a straight micro-hole was fabricated.

Performance Characteristics of an Axial Flow Fan According to the Shape of a Hub Cap (허브 캡 형상에 따른 축류송풍기 성능특성)

  • Jang, Choon-Man;Choi, Seung-Man;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.6 s.39
    • /
    • pp.9-16
    • /
    • 2006
  • Performance characteristics of an axial flow fan having distorted inlet flow have been investigated using numerical analysis as well as experiment. Two kinds of hub-cap, rounded and right-angled front shape, are tested to investigate the effect of inlet flow distortion on the fan performance. Numerical solutions are validated in comparison with experimental data measured by a five-hole probe downstream of the fan rotor. It is found from the numerical results that non-uniform axial inlet velocity profile near the hub results in the change of inlet flow angle. Large recirculation flow upstream the fan rotor for the right-angled hub-cap induces a negative incidence, thus invokes separated flow on the blade surfaces and deteriorates the performance of fan rotor.

Effects of Inlet Vent Shape on Aerodynamic Performance of a Low-Voltage Electric Motor Cooling Fan (유입부 형상이 저전압 전동기 냉각홴의 공력성능에 미치는 영향)

  • Park, Jae-Min;Heo, Man-Woong;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.5
    • /
    • pp.42-49
    • /
    • 2016
  • Aerodynamic analysis of a low-voltage electric motor has been performed with various inlet vent shapes. Effects of inlet vent shape on aerodynamic performance of a motor cooling fan have been investigated numerically using three-dimensional Reynolds-averaged Navier-Stokes equations. The k-${\varepsilon}$ turbulence model was used for the analysis of turbulence. The finite volume method and unstructured tetrahedral grids were used in the numerical analysis. Optimal grid system in the computational domain was selected through a grid-dependency test. From the results of the flow analysis, considerable energy loss by flow separation was observed in the flow passage. It was found that mass flow rate through the cooling fan in the low-voltage motor can be increased by modifying the inlet vent shape. And, some inlet vent shapes were suggested to improve the aerodynamic performance of the motor cooling fan.

The Study of Performance Comparison on the Inlet Shapes of Fan for Engine Room of Ship Using CFD (CFD를 이용한 선박 기관실 공기 공급용 팬 입구 형상에 따른 성능 비교 연구)

  • Kwon, Do-Hoon;Hong, Youn-Gyun;Koo, Seong-Woo;Jeong, Eun-Soo
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.25-31
    • /
    • 2011
  • The performance of fan for engine room of ship is absolutely important when it take into consideration work efficiency, work condition, and the performance of various equipments. Fan performance test should be carried out during sea trial to satisfy owner's requirement as above mentioned. We have considered various values to affect fan test result. In here, various values are to be silencer, fan inlet shape, and arrangement of fan room. In general, the shapes of fan inlet is overall circular type because of the shapes of axial fan. So, all vessels built at SHI have been applied fan inlet of circular type. And now, in order to reduce sound of noise from supply fan, big silencer often has been installed at high value vessels. In this case, the capacity of supplied air can be insufficient due to silencer which is an obstructer about air flow. In this paper, we have studied the performance of fan through comparison between a circular shape and a square shape of fan inlet. We also compare with CFD results and experimental results.

  • PDF

Effect of Shape and Flow Rate on T10 in Clearwell (정수지의 형상과 유입 유량이 T10에 미치는 영향 연구)

  • Shin, Eun-Her;Kim, Sung-Hoon;Park, Hee-Kyung;Ahn, Jae-Chan;Choi, Jae-Ho;Choi, Young-June
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.819-826
    • /
    • 2005
  • To guarantee the disinfection ability in clearwell, a value of CT is considered where C[mg/l] is disinfectant residual at the exit of clearwell and T[min] means $T_{10}$, the contact time when 10% of tracer is out of clearwell after introducing the tracer at the inlet. To meet a CT value required, increasing the C value is not recommended because high C value can increase potential of producing disinfection by product like THMs. Increasing the hydraulic efficiency surrogated by $T_{10}$ is thus an option widely recommended. Right now, it is widely adopted estimating $T_{10}$ considering LW ratio only due to the suggestions of previous researches. The authors think however there are other factors to consider including shape, flow rate, configuration of inlet and outlet, and the existence of intra basin. This study is initiated to closely look at the effects of two factor on hydraulic efficiency. The factors are shape and inlet flow velocity, i.e., inflow. For that, computational fluid dynamics (CFD) model is developed and pilot test is also carried out. The results show that at a L/W ratio, disinfection ability is overestimated with larger length in shape and higher inlet flow velocity. This suggests that in determining $T_{10}$, the shapes of clearwell and inlet flow velocity should also be considered as well as L/W ratio.

Effects of an Inlet Guide Vane on the Flowrate Distribution Characteristics of the Nozzle Exit in a Defrost Duct System (성에제거 덕트 입구 가이드베인 형상이 노즐출구 유량분포특성에 미치는 영향)

  • Kim, Duck-Jin;Lee, Jee-Keun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.88-96
    • /
    • 2008
  • Effects of the duct inlet guide vane on the flowrate distribution characteristics of the defroster nozzle exit in a defrost duct system were investigated experimentally to design the optimum heating, ventilation and air conditioning (HVAC) system applied in an automotive compartment. A 3-dimensional hot-wire anemometer system was used to measure the velocity field in the vicinity of the defroster nozzle jet flow and the velocity distributions near the windshield interior surface. At first, two cases of with- and without-duct inlet guide vanes were considered as the test condition, and then three cases of the duct inlet guide vane were tested to determine the optimum guide vane shape and their positions. The arrangement of the duct inlet guide vanes has an effect on the improved flowrate distribution at the defroster nozzle exit and near the windshield interior surface. However, the application of the lots of guide vane to control the flow direction leads to increase the flow resistance, resulting in the decreased flowrate issuing from the defroster nozzle. The shape of the duct inlet guide vane affects not only the flowrate distribution between the driver side and the assistant driver side but also the reduction of the flow resistance in the defrost duct system.

Measurement of Flow Velocity Distribution at Inlet and Exit of Diesel Particulate Filter (디젤 엔진 매연여과장치 입.출구에서의 유속 분포 측정)

  • Lee, Choong-Hoon;Choi, Ung;Bae, Sang-Hong;Lee, Su-Ryong
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.343-349
    • /
    • 2007
  • The flow velocity distribution at inlet and exit of a DPF was measured using a Pitot tube and 2-D positioning equipment. An adaptor which was designed for accessing the Pitot tube probe into inlet of the DPF was fabricated with inlet flange of the DPF. The Pitot tube which was mounted in the 2-D positioning machine could access to the inlet of the DPF through the rectangular window of the adaptor. Automation of the velocity measurement at the inlet and exit of the DPF was effectively achieved and measuring time was reduced drastically. The flow velocity distribution at the inlet of the DPF showed parabola shape with maximum velocity near to the center of the DPF, as expected. The velocity distribution at the exit of the DPF showed crown shape, that is, the flow velocity distribution near to the center of the DPF is lower than that at surrounded peripheral region of the DPF.