• Title/Summary/Keyword: Inlet Shape

Search Result 362, Processing Time 0.02 seconds

Performance Enhancement of Dual-Inlet Centrifugal Blower by Optimal Design of Splitter (스플리터 형상최적화에 의한 양흡입 원심블로어 성능개선)

  • Lee, Jong Sung;Jang, Choon Man
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1065-1072
    • /
    • 2014
  • The shape of an impeller splitter for a dual-inlet centrifugal blower was optimized to enhance the blower performance. Two design variable, the normalized chord and pitch of a splitter, were used to evaluate the blower performance and internal flow fields based on the three-dimensional flow analysis. The blower performance obtained using this numerical simulation had a maximum error of 4 percent compared to that in an experiment at the design flow condition. The shape optimization of the splitter successfully increased the blower efficiency and pressure by 3.65 and 1.14 percent compared to the reference values. The blower performance was increased by reducing the flow separation near the blade suction surface by optimizing the shape of the splitter, which produced a pressure increase at the outlet of the volute casing.

A Study on the Diffuser Inlet Shape of Thermocompressor for MED Desalination Plant (다중효용 담수설비용 열압축기의 디퓨져 입구부 형상에 관한 연구)

  • Jin, Chang-Fu;Song, Young-Ho;Kim, Kyung-Keun;Park, Gi-Tae;Chung, Han-Shik;Choi, Du-Youl
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.869-876
    • /
    • 2008
  • A thermocompressor is the equipment which compresses a vapor to a desired discharge pressure. Since it was first used as the evacuation pump for a surface condenser, it has been widely adopted for energy saving systems due to its high working confidence. In the present study, the geometrical analysis of the shape between the jet nozzle and the diffuser inlet, the drag force was calculated by means of the integrated equation of motion and the computational fluid dynamic (CFD) package called FLUENT. The computer simulations were performed to investigate the effects by the various suction flow rates, the distance from jet nozzle outlet to the diffuser inlet and the dimensions of the diffuser inlet section through the iterative calculation. In addition, the results from the CFD analysis on the thermocompressor and the experiments were compared for the verification of the CFD results. In the case of a jet nozzle, the results from the CFD analysis showed a good agreement with the experimental results. Furthermore, in this study, a special attention was paid on the performance of the thermocompressor by varying the diffuser convergence angle of $0.0^{\circ}$, $0.5^{\circ}$, $1.0^{\circ}$, $2.0^{\circ}$, $3.5^{\circ}$ and $4.5^{\circ}$. With the increase of the diffuser convergence angle. the suction capacity was improved up to the degree of $1.0^{\circ}$ while it was decreased over the degree of $1.0^{\circ}$.

A Study on Numerical Simulation for the Work Environment Improvement of Highway Tollgate Booth (고속도로 요금소 부스 근무환경 개선을 위한 기류해석 연구)

  • 김신도
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.129-140
    • /
    • 2000
  • Simulation study has been carried out to analyze the air flow supplying from the heat pump system inside the tollgate booth by using the Phoenix computer simulation program. Through this simulation analysis we can find the problem of present tollgate booth in terms of air flow and recommend an improved model also simulate this model. Final results as follows; It was turned out that the fresh air conditioning is not provided to the worker effectively due to the improper location of inlet and outlet in the present tollgate booth in addition to that the air curtain system applied in the booth lowered air circulation from outside. The improved model was suggested first to increase the air curtain effect by downsizing the window and by installation of the air curtain suction line to reduce the induced outdoor air second to supply the fresh air to the worker directly by relocation of the inlet and outlet of supplying air. With these improved modifications better results have been reached in terms of air flow inside the booth. Next through the air flow simulation of outside booth the contaminated outdoor air has been easuily infiltrating into the booth through the window because of its rectangle shape. Stream like shape of booth has been proposed through the computer simulation as an alternative shape of tollgate booth for a new design.

  • PDF

A Study on the Configuration of Two-Dimensional Waterjet Inlet (이차원 물분사 추진장치 입구면 형상에 관한 연구)

  • J.M. Lew;S.K. Hong;Y.G. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.9-21
    • /
    • 1999
  • The waterjet is very widely used today in propulsion system of high speed vessel but manufacturer is limited because of an efficiency and a difficulty of a manufacture on the inlet configuration of the waterjet. The importancy in designing the inlet configuration of the waterjet lies on the minimization of the cavitation which is largely affecting the efficiency. In this paper, the configuration analysis is carried out to find a optimum shape which is minimizing the cavitation using a two dimensional potential-based panel method with an inlet configuration of a flush type. Also, it is developed a direct design method finding an inlet configuration by a given pressure distributions. The numerically obtained optimum shape using this configuration analysis method show a good agreement compared to the Kashiwadani's results. It is carried out a direct design method over a lip and a ramp of an inlet configuration wish pressure distributions obtained a result of the configuration analysis and the results show a good agreement compared to original configuration.

  • PDF

Collection Characteristics of Electro-Cyclone with Charging Type (하전방식에 따른 전기싸이클론의 집진특성)

  • 여석준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.4
    • /
    • pp.463-473
    • /
    • 1999
  • The main purpose of this study is to investigate the characteristics of precharge electro-cyclone compared to those of innercharge electro-cyclone, experimentally. Especially, the experiment is executed focusing on the improvement of collection efficiency with the charging types including the experimental parameters such as the discharge electrode shapes, applied voltages and gas inlet velocities. Results show that the overall collection efficiency of precharge electro-cyclone is increased over 20% than that of the innercharge type for the same discharge electrode(ø 4 mm, screw rod) in the inlet velocity of 4 m/s, and applied voltage of 30kV. Moreover, the pressure drop of precharge type becomes 10% lower than that of the innercharge type for the inlet velocity of 12 m/s owing to the disturbance of inner vortex flow by the discharge electrode equipped in the center region of cyclone body.

  • PDF

UNSTEADY SUPERSONIC INLET DIFFUSER FLOWS WITH SINUSOIDAL PRESSURE OSCILLATIONS

  • Jong Yun Oh
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.107-116
    • /
    • 1996
  • Numerical simulations have been conducted to characterize unsteady flow structures in an axisymmetric supersonic inlet diffuser with sinusoidal pressure oscillations at the diffuser exit. The formulation is based on the unsteady Navier-Stokes equations and turbulence closure is achieved using a two-layer model with a too-Reynolds-number scheme for the near-wall treatment. The governing equations are formulated in an integral form, and are discretized by the four-stage Runge-Kutta scheme for temporal terms and the Harten-Yee upwind TVD scheme for convective terms. Results indicated that the inlet shock characteristics are significantly modified by acoustic oscillations originating from the combustor. The characteristics of shock/boundarv-layer interactions (such as the size of separation bubble, terminal shock shape, and vorticity intensity) are also greatly iufluenced by the shock oscillation due to acoustic waves.

  • PDF

Pressure Characteristics According to the Duct Shapes of Turbo Blowers Connected in Serial (다단 블로어 덕트형상에 따른 압력특성 연구)

  • Park, Young-Bin;Jang, Choon-Man;Yang, Sang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.30-35
    • /
    • 2010
  • Pressure characteristics according to the duct shapes of turbo blowers connected in serial have been performed to reduce pressure loss in the piping system. To analyze three-dimensional flow field in the turbo blower system, general analysis code, CFX, is introduced in the present work. SST turbulence model is applied to estimate the eddy viscosity. Throughout the numerical simulation for the turbo blower system having a various shape of a inlet guide, optimal inlet guide can be selected. It is found that the pressure loss in the piping system having the optimal inlet guide can be reduced by minimizing the inflow distortion at the upstream of the impeller. Detailed flow analysis of the blower system serially connected is also performed and analyzed.

A Fluid Flow Numerical Study on the Design Factor of Inlet Distribution Channel for Flocculation/Sedimentation Basin (유동(流動) 수치해석(數値解析)을 이용한 응집·침전지 유입 분배수로 설계인자 연구)

  • Yoon, Jang-Ken;Kim, Jeong-Hyun;Oh, Jung-Woo;Ha, Eun-Jung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.4
    • /
    • pp.337-342
    • /
    • 2000
  • In water treatment plants, open channel is used to distribute incoming flow to parallel treatment unit, such as flocculation basin and sedimentation basin. These control devices must be designed so that the incoming flow evenly distributed to the process unit. this is important in the view of optimizing process unit. In the recent past. significant insights into the sedimentation process have been developed. In this study, the 2-D computer program is developed to investigate fluid flow field and velocity vectors in flocculation sedimentation inlet distribution weir and calculate flow rates in each inlet weir. The specific purpose of this study is to analyze physical design factors, such as now rates, shape of channel, tapered angle in tapered type channel and main channel width.

  • PDF

Design and Analysis of Flap System with Shape Memory Alloy (형상기억합금이 적용된 플랩 시스템의 설계 및 해석)

  • ;Scott R, White;Eric Loth
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.596-599
    • /
    • 1997
  • In this study, the flow control system with shape memory alloy in jet engine inlet was suggested to adjust the shock boundary layer interact~on for supersonic flight system. It consisted of the flap with shape memory alloy, spar with steel, and fixing device with aluminum alloy. The advantages of itself are a simple configuration, a passive air circulation by using the flap deflection due to pressure difference, and no need to be required the auxiliary devices. Finite element analysis was conducted to predict the thenno-mechanical behavlor of the flap system with shape memory alloy. The user-defined subroutine UMAT was implemented with ABAQUS to accon~modate the thermo-mechanical constitutive relation of shape memory alloy.

  • PDF

Design Feature-Based Jetfighter Shape Modeling

  • Zang, Jing;Liu, Hu;Liu, Tianping;Ni, Xianping
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.222-228
    • /
    • 2013
  • A jetfighter shape modeling method based on design features is researched, to improve the efficiency of shape modeling in the stage of conceptual aircraft design. The aircraft's general design features and shape parameters, including geometric and position parameters, are described. The coordinate systems of the entire aircraft and its components are defined. As a sample of local shape, a method of inlet intake modeling is introduced. The whole process of the modeling method is proposed. Three examples of different jetfighters are listed, to describe the achievement of basic layout, which includes four main elements. The Fusion of Components can be achieved by regulating the details of the sections of the fuselage. Sample Cases of typical layouts are shown to verify the effectiveness of the proposed method, which provides the basis for further analysis and optimization.