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Abstract

Numerical simulations have been conducted to characterize unsteady flow structures in an
axisymmetric supersonic inlet diffuser with sinusoidal pressure oscillations at the diffuser exit. The
formulation is based on the unsteady Navier-Stokes equations and turbulence closure is achieved
using a two-layer model with a low-Reynolds-number scheme for the near-wall treatment. The
governing equations are formulated in an integral form, and are discretized by the four-stage
Runge-Kutta scheme for temporal terms and the Harten-Yee upwind TVD scheme for convective
terms. Results indicated that the inlet shock characteristics are significantly modified by acoustic
oscillations originating from the combustor. The characteristics of shock/boundary-layer interactions
(such as the size of separation bubble, terminal shock shape, and vorticity intensity) are also
greatly influenced by the shock oscillation due to acoustic waves.

I. Introduction

The unsteady behavior of supersonic inlet
diffuser flows has long been a concern in the
development of ramjet propulsion systems, due to
undesirable, longitudinal pressure oscillations
caused by combustion instabilities.[1] As a result
of unsteady combustion processes, acoustic waves
can be produced in the combustor and propagate
upstream, which, upon reaching the diffuser
section, interact with the local flow and cause the
terminal shock to oscillate about its mean position.
In extreme cases, the shock may be disgorged out
of the inlet, leading to a catastrophic engine
failure. Thus the inlet diffuser must provide a
stability margin sufficient for
perturbations of the shock system.

Sajben and co-workers[2-8] reported extensive,
detailed investigations into transonic diffuser flows
with pressure oscillations. Their studies have
considered various flow conditions, such as flow
separation, supercritical and subcritical operations,
and self- and forced-excited oscillations. Several
numerical studies of the problem have been carried
out in order to simulate the experimental results
of Sajben et al. by solving the Navier-Stokes
equations for multidimensional transonic/supersonic
flows.[9-11] Detailed information has been obtained

accommodating

to provide a better understanding of the flowfields,
especially under conditions when flow separation
occurs.

Analytical approaches to the shock/acoustic
wave interactions have also been conducted. Culick
and Rogers[12] analyzed the problem of small-
amplitude motions of a normal shock in a one-
dimensional flow. The shock admittance functions
are obtained for two cases: inviscid flow, and a
case which included a crude approximation of the
influences of flow separation. Yang and Culick[13]
investigated the same flow model for (finite-
amplitude  motions, incorporating a  finite-
difference scheme with a shock-fitting algorithm.
They studied the response of a shock wave to
various disturbances, including large-amplitude
periodic oscillations and pulse perturbations.

Most studies of unsteady inlet -flows only
treated a simple normal shock in a converging/
diverging The
upstream of the terminal shock was not taken into
This may lead to unacceptable
results for actual ramjet propulsion systems. In
this paper, the complicated compression process in
an axisymmetric mixed-compression supersonic
inlet is fully accounted to provide a realistic
simulation of supersonic inlet flows. The unsteady
Navier-Stokes with

nozzle. compression  process

consideration.

equations a two-equation
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turbulence model are formulated in an integral
form to facilitate a finite-volume method, and are
discretized by the four-stage Runge-Kutta scheme
for temporal terms and the Harten-Yee upwind
TVD scheme[l4] for convective terms. Since the
coupling between the inlet diffuser and combustion
processes is not considered here, the combustion-
generated acoustic fluctuations are simulated by
imposing sinusoidal pressure oscillations at the
inlet exit plane.

II. Numerical Procedures
verni tions

The analysis is based on the Navier-Stokes
equations for unsteady compressible flows in
cvlindrical coordinates. For convenience, the
conservation equations are written in the following
vector form.

0Q  JE  3F _9dE, JF,
ot T oz Tar = a9z T oy TH @

The dependent variable vector &, the inviscid flux
E and

F, the viscous flux vectors, E, and F,, and the

vectors in the axial and radial directions,

source vector H are defined as

A o, ou, pv,0e] "

A ou, 012 + p, puv, (pe+ p)u] "

A pv, puv, pv? + p, (pe+ vl @)
7{012-225 T 2r uz'zz+ vrzr—az]T

7{01 Tars Tors uz.zr+ UZ',,,—Q,]T
[0,0,p— 745,017

I

o

APy mo

where the superscript 7 stands for transpose of
the vector. Standard notations in fluid mechanics
are used herein. The shear and normal stresses,

T,sy Ty Tay, and 74 are defined respectively as

T = /1[2%—% (v -_‘7)]

e, = W2 -4 (1T 3)
Tor = #[g—’;+—g§]

Tgy = ﬂ[Z—:);—%(V |_17)]

where the divergence in cylindrical coordinates is

defined as
U= Ou 1. 9
v V= 3z + " ar(rv) (4)
The thermal diffusion terms ¢, and ¢, are

oT —_ 0T
a,= 37’ (5)

The wviscosity # and thermal conductivity A
contain both laminar and turbulent components.
The laminar
obtained from the
turbulent eddy viscosity

component of viscosity g is
Sutherland and the
is determined by

Rodi's two-layer model[15] which combines the

law

standard k— & two-equation model for the core
flow and the one-equation model near the wall
The laminar and turbulent components of thermal
conductivity A, and A} are calculated by

_Cau ., _ G
A="pr, A= Tpr, ®)

where C, is the specific heat at constant

pressure, and Pr, and Pr, are the laminar and
turbulent  Prandtl
complete the formulation, the equation of state for

a perfect gas is used to evaluate the pressure
through the following formula

numbers, respectively. To

p=(7—1)[pe—%p(u2+v2)] @)

where 7 is the specific heat ratio.
Finite-Volume Formulation

The governing equations are solved numerically
by means of a finite~volume approach. This

method allows for ftreatment of arbitrary
geometries and avoids problems with metric
singularities usually associated with finite-

difference methods. To initiate, we first integrate
the differential conservation equation over a finite
volume V enclosed by surface S. The volume
integral for the flux vector is then converted to a
through the Gauss divergence

theorem. Then the volume-integrated governing

surface integral
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equations are discretized by the four-stage
Runge-Kutta scheme for the temporal terms and
by the Harten-Yee upwind TVD scheme for the

spatial convection terms.[14]
Boundary Conditions
Figure 1 shows the configuration of the inlet

diffuser under
computational domain, where both axial and radial

investigation and its associated

coordinates are normalized with respect to the
of the R.=34 mm. The

centerbody contour near the exit is meodified to
have a constant area so that the flow becomes

radius cowl lip,

uniform in the radial direction. The computational
domain consists of both internal and external flow
regions. The internal flow region contains most of
the important flow structures and the external
flow region is indispensable when flow spillage
over the cowl lip occurs at a subcritical operating
condition.

The types of boundaries considered are inflow,
outflow, symmetry, solid wall, and far-field
boundaries. Since the inflow is supersonic, the
flow variables at the inflow boundary are fixed at
their corresponding freestream values. At the
outflow boundary, the back pressure is specified
with other flow variables extrapolated from the
interior for the steady-state flow calculations.
Then a sinusoidal pressure fluctuation is added for
the unsteady flow calculations.

For the symmetry boundary, the
and the
tangential velocity are set to zero. On the solid

normal

velocity normal derivative of the
wall surface, the velocity components are set to
zero for no-slip condition and the pressure is
obtained from the normal component of the
momentum equation and the temperature is
evaluated from the adiabatic condition.

The flow variables at the far-field boundary
are extrapolated from the interior along the
characteristic lines to avoid shock reflections,

using the solution of a simple wave.[16]

III. Results and Discussion

The numerical procedure described in Sec. II is
used to study the unsteady flow structures in an
axisymmetric inlet diffuser with
sinusoidal pressure oscillations at the diffuser exit.

supersonic

The steady-state solution is first obtained to
characterize the inlet flow structure at a given
back pressure at the exit plane. The back pressure
is selected to have the terminal shock located at
the diverging section of the diffuser, in which the
inlet undergoes a supercritical operating condition.
After the steady-state solution is obtained, a
sinusoidal pressure oscillation is imposed at the
exit to simulate acoustic motions caused by

unsteady combustion.

p’ = Asin (o)

2n1, with J
being the frequency, and A is the amplitude of

where @ is the angular frequency,

pressure oscillation. The freestream flow conditions
include the Mach number of 2.0, the total pressure
of 264 atm, and the total temperature of 546 K.
In a viscous supersonic inlet flow, the shock/
boundary-laver interaction plays a very important
role in dictating the overall flow structure. Thus
attention is focused on the effect of pressure
oscillation on the shock/boundary-layer
The
computational grid contains 204 X 60 points for the

interactions in the viscous flow analysis.

internal flow region and 84 X45 points for the
external flow region. The grid is stretched toward
the wall in order to provide sufficient resolution of
turbulence boundary layer.

teadv-State llow

Figures 2 and 3 presents the Mach number and
pressure  contours, and their corresponding
distributions along the centerline of the diffuser
for two different back pressures. The existence of
the boundary layer does not allow the pressure
discontinuity across the shock since the flow in
the inner part of the boundary laver is subsonic.
Thus, the pressure rise across the shock can be
transmitted upstream through the subsonic part of
the boundary layer, causing the streamlines in the
subsonic region to diverge[l7] As a result, the
boundary laver thickens and may be separated
from the wall if the pressure rise across the shock
is sufficiently large. Due to the existence of the
boundary layer, the shock wave near the surface
exhibits a lambda structure; the flow near the
walls passes through an oblique shock system
while the flow in the core region passes through a

normal shock. This results in the peak in
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distributions after the shock.

Shock/Acoustic-Wave Interactions

Figure 4 shows the pressure distributions along
both walls and centerline and the Mach number
contours in one cycle of pressure oscillation for

the case of an amplitude of 0.05p, and a

frequency of 1000 Hz. The shock and downstream
flow structures are distinguished by the direction
of the shock movement. When the decreasing
pressure wave hits the normal shock, the shock
starts to move downstream to adjust the pressure
change. As it progresses downstream, the shock
strength becomes weaker by observing the
decreasing pressure rise along the
across the shock. Also the shape of the shock
becomes flatter, ie. the oblique shock region
becomes smaller and the normal shock region
becomes larger. The pressure distribution shows
that the pressure rising points between at the wall
and the centerline becomes closer. When the shock
turns its direction and moves upstream due to the

centerline

increasing pressure wave incident on the shock,
the shock becomes stronger and the shock induced
flow separation bubbles appear on both walls.

The case of A=0.1p, and f=1000 Hz is

shown in Fig. 5 The increment of pressure
oscillation amplitude changes the shock and
downstream flow structures greatly. A strong
pressure gradient develops and becomes the shock.
In this situation, the first pressure gradient
becomes weaker still moving downstream and the
second pressure gradient becomes stronger and
finally evolving to a shock.

The vorticity contours for both cases in one
cycle of oscillation are shown in Figs. 6 and 7. In
the viscous flow analysis, the vorticity is mainly
generated by the boundary layers near the walls.
In the core flow region, the vorticity is also
generated by the existence of the oblique shock
system near the walls. We can see that the
strength of the vorticity changes with the
direction of the shock movement. As we discussed
above, the oblique shock system occupies larger
portion of the normal shock when the shock
moves upstream. We should note here that the
range of the vorticity is conveniently adjusted to
demonstrate the strength of the vorticity in the
core flow region. Of course, the vorticity near
both walls inside the boundary layers are much

larger than that in the core flow region even
though thev might share the same brightness or
darkness shown in this figure. Because of the
development of boundary layer, the spatial
variation of vorticity in the core flow region
gradually disappears as the flow is convected
downstream. The flow passing through the oblique
shock system becomes faster than the the flow
passing through the strong normal shock, thereby
rendering negative vorticity in the top region and
positive vorticity in the bottom region.

IV. Conclusions

Numerical simulations have been conducted to
structures in an
axisymmetric  supersonic diffuser with
sinusoidal pressure oscillations at the diffuser exit.
The model treats the unsteady and Navier-Stokes
equations with a two-equation turbulence model in
cvlindrical coordinates. A number of notable
features observed in this study are given as

characterize unsteady flow

inlet

follows.

1) The sizes of the flow-separation pockets
near the walls vary in accordance to the normal
shock  strength. When the shock moves
downstream, the shock becomes weaker and
gradually disappears. Consequently, the separation
pocket disappears as well.

2) When the terminal shock moves downstream
for the case of A=0.1p;, a strong pressure

wave develops in the downstream region and
merge together with the terminal shock to form a
much stronger shock.
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Figure 1. Axisymmetric supersonic inlet and computational domain

Mach Number Pressure

Figure 2. Steady-state Mach number and pressure contours
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Figure 3. Steady-state Mach number and pressure distributions along the centerline of
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contours in one cycle of pressure oscillation. ( A=0.1p, f= 1000 Hz)
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