DOI QR코드

DOI QR Code

Performance Enhancement of Dual-Inlet Centrifugal Blower by Optimal Design of Splitter

스플리터 형상최적화에 의한 양흡입 원심블로어 성능개선

  • Lee, Jong Sung (Environmental Engineering Research Division, Korea Inst. of Construction Technology) ;
  • Jang, Choon Man (Environmental Engineering Research Division, Korea Inst. of Construction Technology)
  • Received : 2014.05.14
  • Accepted : 2014.09.16
  • Published : 2014.12.01

Abstract

The shape of an impeller splitter for a dual-inlet centrifugal blower was optimized to enhance the blower performance. Two design variable, the normalized chord and pitch of a splitter, were used to evaluate the blower performance and internal flow fields based on the three-dimensional flow analysis. The blower performance obtained using this numerical simulation had a maximum error of 4 percent compared to that in an experiment at the design flow condition. The shape optimization of the splitter successfully increased the blower efficiency and pressure by 3.65 and 1.14 percent compared to the reference values. The blower performance was increased by reducing the flow separation near the blade suction surface by optimizing the shape of the splitter, which produced a pressure increase at the outlet of the volute casing.

본 연구에서는 양흡입 원심블로어의 성능향상을 위하여 임펠러 스플리터의 형상 최적화 연구를 수행하였다. 두 개의 스플리터 형상 설계 변수(스플리터 코드 및 피치)를 선정하여 블로어 성능 및 내부 유동장 특성을 평가하였다. 수치해석에 의한 블로어 성능은 설계유량 조건에서 실험결과와 최대 4 % 이내로 잘 일치하였다. 스플리터 형상 최적화를 통하여 설계조건에서의 블로어 효율 및 압력은 기준 블로어 보다 3.65 % 및 1.14 % 각각 향상되었다. 스플리터 최적설계로 임펠러 날개 부압면의 유동박리를 억제시켜 익간 저속 유동에 의한 압력손실을 줄임으로써 블로어 전체의 성능이 향상되었다. 익간 내부유동 균일화는 임펠러 출구속도 분포에도 영향을 주어 볼류트케이싱 출구압력도 향상되었다.

Keywords

References

  1. Park, J. Y., Park, M. R., Hwang, S. C. and Ahn, K. Y., 2010, "Effects of Impeller Blade Thickness on Performance of a Turbo Blower," Journal of Fluid Machinery, Vol. 13, No. 4, pp. 5-10.
  2. Kim, J. W. and Ahn, E. Y., 2004,"A Study on the Performance of Centrifugal Blower by Blades Characteristics," Journal of Fluid Machinery, Vol. 7, No. 5, pp. 13-19. https://doi.org/10.5293/KFMA.2004.7.5.013
  3. Jang, C. M. and Yang, S. H., 2011,"Performance Analysis on the Design Variables of a Turbo Blower," Journal of Fluid Machinery, Vol. 14, No. 2, pp. 47-51. https://doi.org/10.5293/KFMA.2011.14.2.047
  4. Jang, C. M., 2010, "Optimal Operation of Turbo Blowers Serially Connected Using Inlet Vanes," Proceedings of 3rd Asian Workshop on Thermophysics and Fluid Science, pp. 98-103.
  5. Kim, J. H., Cha, K. H., Kim, K. Y. and Jang, C. M., 2012, "Numerical Investigation on Aerodynamic Performance of a Centrifugal Fan with Splitter Blades," International Journal of Fluid Machinery and Systems, Vol. 5, No. 4, pp. 168-173. https://doi.org/10.5293/IJFMS.2012.5.4.168
  6. Yang, S. S., Kong, F. Y., Fu, J. H. and Xue, L., 1994, "Numerical Research on Effects of Splitter Blades to the Influence of Pump as Turbine," International Journal of Rotating Machinery, Vol. 2012, pp. 1-9.
  7. Gui, L., Gu, C. and Chang, H., 1989,"Influences of Splitter Blades on the Centrifugal Fan Performances," ASME Journal, 89-GT-33, pp. 1-6.
  8. Lee, J. S. and Jang, C. M., 2014, "Performance Characteristics of the Double-Inlet Centrifugal Blower according to the Shape of an Impeller," Journal of Fluid Machinery, Vol. 17, No. 1, pp. 28-34. https://doi.org/10.5293/kfma.2014.17.1.028
  9. CFX-13 User Manual, 2010, Ansys inc.
  10. Menter, F. R., 1994,"Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications," AIAA Journal, Vol. 32, No. 8, pp. 1598-1605. https://doi.org/10.2514/3.12149
  11. Myers, R. H. and Montgomery, D. C., 1995,"Response Surface Methodology: Process and Product Optimization Using Designed Experiments,"John Wiley & Sons, New York.