• Title/Summary/Keyword: Inlet Duct

Search Result 203, Processing Time 0.024 seconds

Optimization of Flow Uniformity in an Electrostatic Precipitator (ESP) Duct (전기집진기 (ESP) 덕트 내부 유동 균일화를 위한 연구)

  • Junhyung, Hong;Minseung, Hwang;Joungho, Han;Woongchul, Choi;Jeongmo, Seong;Wontae, Hwang
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.86-93
    • /
    • 2022
  • An electrostatic precipitator (ESP) is an industrial post processing facility for high efficiency dust mitigation. Uniformity of the flow passing through the inlet duct leading into the main chamber is important for efficient reduction of dust. To examine flow uniformity, this study conducted a numerical analysis of the flow within a scale-down ESP inlet duct. Magnetic resonance velocimetry (MRV) results from a prior study were utilized to validate the Reynolds-averaged Navier-Stokes (RANS) numerical simulations. Both the experimental and computational results displayed a similar recirculation zone shape and normalized velocity profile near the duct outlet for the baseline geometry. To optimize the uniformity of the flow, the number of guide vanes was modified, and the guide vanes were partially extended straight upward. Design evaluation is done based on the outlet velocity distribution and mass flowrate balance between the two outlets. Simulation results indicate that the vane extension is critical for flow optimization in curved ESP ducts.

Numerical Analysis of the Flow in the Drying Chamber of a Sizing Machine (가호기 건조 시스템에서 수치적 유동해석)

  • 이진호;김수연
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1996.10a
    • /
    • pp.29-34
    • /
    • 1996
  • In the present paper, the flow distribution in the hot air drying chamber of a sizing machine was numerically analyzed with respect to the geometries of the intake duct to obtain the more uniform flow distribution in the chamber. The result shows that the velocity distribution in the inlet of the chamber was significantly dependent on the the geometry of the intake duct. The degree of the non-uniformity in the chamber was reduced as the incident angle of the intake duct became to be smaller.

  • PDF

Intake Performance Characteristics according to S-duct Cross-section Shape in UAV (무인기 S형 흡기구의 단면 형상에 따른 흡기구 성능 특성)

  • Eom, Hee-Ok;Bae, Ji-Yeul;Lee, Namkyu;Kim, Jihyuk;Nam, Juyeong;Jo, Hana;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.107-114
    • /
    • 2019
  • In many military aircraft, s-shaped diffusers are used to prevent the fan blades of the turbofan engine from being exposed to the outside. The inlet configurations of the air intakes for military aircraft vary, such as the rectangular intake of the F-22, the crescent-like intake of the F-16, elliptical intake of the MQ-25. In this study, the aerodynamic performance of s-shaped diffusers with various inlet configurations was evaluated using numerical analysis. In addition, the configuration of the middle section of an s-shape duct was changed to the crescent shape, and the effects on its aerodynamic performance were investigated. As a result, there was a slight difference in total pressure recovery according to various inlet configurations with ellipse-shaped middle sections. Also, the total pressure distortion was the lowest in the rectangular inlet shape. When the configuration of the middle section was changed from an ellipse to a crescent shape, the total pressure recovery remained at a high level, except for the ellipse-shaped inlet configuration. In terms of total pressure distortion, the duct with the crescent-shaped middle section showed a significantly more uniform pressure distribution than that with the ellipse-shaped middle section.

A Study on Velocity Distribution Characteristics for Each Location and Effectiveness of Straight Duct Length in a Square-sectional 180° Bended Duct (정사각형 단면을 갖는 180° 곡관에서 위치별 속도분포특성 및 직관거리의 유효성에 관한 연구)

  • Chen, Jing-Jing;Yoon, Jun-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.618-627
    • /
    • 2016
  • This study numerically analyzes the characteristics of the velocity distribution for each location of a square-sectional $180^{\circ}$ bent duct using a Reynolds Stress Turbulent model. The flow parameters were varied, including the working fluids, inlet velocity, surface roughness, radius of curvature, and hydraulic diameter. The boundary conditions for computational fluid dynamics analysis were inlet temperatures of air and water of 288 K and 293 K, inlet air velocity of 3-15 m/s, inner surface roughness of 0-0.001 mm, radius of curvature of 2.5-4.5 D, and hydraulic diameter of 70-100 mm. The working fluid characteristics were highly affected by changes in the viscous force. The maximum velocity profiles in the bent duct were indicated when the $90^{\circ}$ section was in the region of X/D=0.8 and the $180^{\circ}$ section was in the region of Y/D=0.8. Lower surface roughness and higher radius of curvature resulted in a higher rate of velocity change. Also, an efficient measuring location downstream of the bent duct is suggested since the flow deviations were the most stable when the straight duct length was in the region of L/D=30. The minimum deviations at the same velocity conditions according to the hydraulic diameter were mostly indicated in the range of L/D=15-30 based on the standard deviation characteristics.

A CFD Analysis of Flow Velocity at Inlet of a Diesel Particulate Filter according to the Curved Duct Connection Conditions (곡관 연결 조건에 따른 디젤엔진 매연여과장치 입구 유속 분포의 CFD 해석)

  • Lee, Su-Rvong;Ko, Young-Narn;Lee, Choong-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.457-464
    • /
    • 2009
  • The now velocity distribution at inlet of diesel Particulate filter (DPF) which is connected to each curved duct was simulated using $STAR-CD^{(R)}$. Three kinds of models which describe the shapes of the curved duct ware used for the CFD simulation. The simulation results were compared with the experimental data of velocity distribution which was obtained using a Pitot tube and 2-D positioning machine. At the $90^{\circ}$ curved connecting condition, the CFD simulation results of flow velocity distribution at inlet of the DPF showed a horse hoop shape shifted from the axial center line of the DPF. The CFD simulation results agree reasonably with those of the experiments.

Steady-State/Transient Performance Simulation of the Propulsion System for the Canard Rotor Wing UAV during Flight Mode Transition

  • Kong, Changduk;Kang, Myoungcheol;Ki, Jayoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.513-520
    • /
    • 2004
  • A steady-state/transient performance simulation model was newly developed for the propulsion system of the CRW (Canard Rotor Wing) type UAV (Unmanned Aerial Vehicle) during flight mode transition. The CRW type UAV has a new concept RPV (Remotely Piloted Vehicle) which can fly at two flight modes such as the take-off/landing and low speed forward flight mode using the rotary wing driven by engine bypass exhaust gas and the high speed forward flight mode using the stopped wing and main engine thrust. The propulsion system of the CRW type UAV consists of the main engine system and the duct system. The flight vehicle may generally select a proper type and specific engine with acceptable thrust level to meet the flight mission in the propulsion system design phase. In this study, a turbojet engine with one spool was selected by decision of the vehicle system designer, and the duct system is composed of main duct, rotor duct, master valve, rotor tip-jet nozzles, and variable area main nozzle. In order to establish the safe flight mode transition region of the propulsion system, steady-state and transient performance simulation should be needed. Using this simulation model, the optimal fuel flow schedules were obtained to keep the proper surge margin and the turbine inlet temperature limitation through steady-state and transient performance estimation. Furthermore, these analysis results will be used to the control optimization of the propulsion system, later. In the transient performance model, ICV (Inter-Component Volume) model was used. The performance analysis using the developed models was performed at various flight conditions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the turbine inlet temperature overshoot limitation as well as the compressor surge margin. Because the engine performance simulation results without the duct system were well agreed with the engine manufacturer's data and the analysis results using a commercial program, it was confirmed that the validity of the proposed performance model was verified. However, the propulsion system performance model including the duct system will be compared with experimental measuring data, later.

  • PDF

Axial Direction Velocity and Wall shear Stress Distributions of Turbulent Steady Flow in a Curved Duct (곡관덕트에 난류정상유동의 축방향 속도분포와 벽면전단응력분포)

  • 이홍구;손현철;이행남;박길문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.131-138
    • /
    • 2001
  • In this paper, an experimental investigation of characteristics of developing turbulent steady flows in a square-sectional $180^{\circ}$curved duct is presented. The experimental study using air in a square-sectional $180^{\circ}$ curved duct carryed out to measure axials direction velocity and wall shear stress distrbutions by using Laser Dopper Velocimeter(LDV) system with data acquistion and processing the system of FIND6260 softwere at 7 sections from the inlet($\phi=0^{\circ}$) to the outlet($\phi=180^{\circ}$) in $301^{\circ}$ intervals of a curved duct.

  • PDF

Layout design of the vehicle intake system for reducing the radiated noise (토출소음 저감을 위한 차량 흡기시스템 레이아웃 설계)

  • Kim, Hoi-Jeon;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.443-446
    • /
    • 2006
  • For the satisfaction of the high engine performance and the low radiated sound pressure simultaneously, the duct length in the vehicle intake/exhaust system should be tuned carefully in the design and development stage of a vehicle. This study was concerned about the effects of intake duct length in clean and dirty sides on the radiated sound emitted from an inlet. An index derived from the existing prediction model of radiated sound pressure was employed to determine which duct was more influential to the radiated sound. Comparing the experimental and predicted results, we found that the change of dirty-side duct length caused a larger change than that in the clean side in the radiated sound level from a tested intake system.

  • PDF

An Experimental Study of Turbulent Uniform Shear Flow in a Nearly Two-Dimensional $90^{\circ}$ Curved Duct (I) - Mean Flow Field- (2차원 $90^{\circ}$ 곡관에서 균일전단류의 특성에 대한 실험적 연구 (1) -평균유동장-)

  • 임효재;성형진;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.834-845
    • /
    • 1995
  • An experimental study is made in a nearly two-dimensional 90.deg. curved duct to investigate the effects of interaction between streamline curvature and mean strain on turbulence. The initial shear at the entrance to the curved duct is varied by an upstream shear generator to produce five different shear conditions ; a uniform flow (UF), a positive weak shear (PW), a positive strong shear(PS), a negative weak shear (NW) and a negative strong shear(NS). With the mean field data of the case UF, variations of the momentum thickness, the shape factor and the skin friction over the convex(inner) surface and the concave (outer) surface are scrutinized quantitatively in-depth. It is found that, while the pressure loss due to curvature is insensitive to the inlet shear rates, the distributions of wall static pressure along both convex and concave surfaces are much influenced by the inlet shear rates.

Quantitative Analysis of the Impact of Inlet Duct Spray on Scrubbing Efficiency using Experimental Design (실험계획법을 이용한 입구덕트 스프레이의 습식 세정 효율 변화효과 분석 연구)

  • Lee, Minwoo;Kim, Hyun Ho;Koo, Junemo
    • Journal of ILASS-Korea
    • /
    • v.24 no.1
    • /
    • pp.8-14
    • /
    • 2019
  • The purpose of this study is to develop a packing-free wet scrubber to prolong the maintenance interval compared with the conventional packed bed wet scrubbers with which frequent operation stops are unavoidable to clean the packing materials. The main- and interaction-effects were quantitatively analyzed by regression analysis for the measured ammonia scrubbing data from the experiments prepared by experimental design. The scrubbing efficiency of the newly developed wet scrubber was found to be over 95% under the condition of flue gas flow rate of 90CMM and liquid-to-gas ratio $2l/m^3$ for all considered trials of experimental design. The interaction effect between the inlet duct spray and the filter was found to be important, which controls the droplet growth due to the droplet collisions between the duct- and scrubbing tower-spray. The presented methodology to analyze the impacts of operational and design factors on the scrubber efficiency showed potential for applications to optimize the future flue gas abatement process in semiconductor plants.