Browse > Article
http://dx.doi.org/10.5407/jksv.2022.20.3.086

Optimization of Flow Uniformity in an Electrostatic Precipitator (ESP) Duct  

Junhyung, Hong (Department of Mechanical Engineering, Seoul National University)
Minseung, Hwang (Department of Mechanical Engineering, Seoul National University)
Joungho, Han (Department of Mechanical Engineering, Seoul National University)
Woongchul, Choi (Department of Mechanical Engineering, Seoul National University)
Jeongmo, Seong (Department of Mechanical Engineering, Seoul National University)
Wontae, Hwang (Department of Mechanical Engineering, Seoul National University)
Publication Information
Journal of the Korean Society of Visualization / v.20, no.3, 2022 , pp. 86-93 More about this Journal
Abstract
An electrostatic precipitator (ESP) is an industrial post processing facility for high efficiency dust mitigation. Uniformity of the flow passing through the inlet duct leading into the main chamber is important for efficient reduction of dust. To examine flow uniformity, this study conducted a numerical analysis of the flow within a scale-down ESP inlet duct. Magnetic resonance velocimetry (MRV) results from a prior study were utilized to validate the Reynolds-averaged Navier-Stokes (RANS) numerical simulations. Both the experimental and computational results displayed a similar recirculation zone shape and normalized velocity profile near the duct outlet for the baseline geometry. To optimize the uniformity of the flow, the number of guide vanes was modified, and the guide vanes were partially extended straight upward. Design evaluation is done based on the outlet velocity distribution and mass flowrate balance between the two outlets. Simulation results indicate that the vane extension is critical for flow optimization in curved ESP ducts.
Keywords
Electrostatic Precipitator; Computational Flow Visualization; Guide Vane; Flow Uniformity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Idelchik, I., and Aleksandrov, V., 1974, "Effect of nonuniformity of gas-flow on efficiency of electrostatic precipitators," Therm. Eng., Vol. 21, pp. 85-87.
2 Shin, W. H., Hong, W. S., and Song, D. K., 2010, "Relationship between standards for gas flow uniformity inside electrostatic precipitators," J. Korean Soc. Atmos. Environ., Vol. 26, pp. 234-240.   DOI
3 Kwon, H. G., Park, S. H., Cho, H. H., and Park, K. S., 2006, "Effect of inlet diffuser-angle for flow uniformity of industrial electrostatic precipitators," Korean J. Air-Cond. Refrig. Eng., Vol. 18(4), pp. 328-334.
4 Noh, K. W., Bae, S. J., Park, S. H., Kang, S. K., and Lee, J. M., 2013, "Design of a guide vane for improving inside flow uniformity of electrostatic precipitator," The Korean Institute of Electrical Engineers, Vol. 62, pp. 523-528.   DOI
5 Kim, D. U., 2020, "Flow field optimization in an electrostatic precipitator with perforated plates (Master's dissertation)," Chungbuk National University, Cheongju, Korea.
6 Jedrusik, M., Swierczok, A., and Luszkiewicz, D., 2017, "Physical and numerical modelling of gas flow in electrostatic precipitator," Przeglad Elektrotechniczny, Vol. 2, pp. 230-233.
7 Valsala, R. R., Son, S. W., Suryan, A., and Kim, H. D., 2019, "Study on reduction in pressure losses in pipe bends using guide vanes," J. Vis., Vol. 22(4), pp. 795-807.   DOI
8 Hurtado, J. P., Villegas, B., Perez, S., and Acuna, E., 2021, "Optimization study of guide vanes for the intake fan-duct connection using CFD," Processes, Vol. 9(9), 1555.   DOI
9 Kim, D. U., Jung, S. H., Shim, S. H., Kim, J. T., and Lee, S. S., 2019, "Flow distribution in an electrostatic precipitator with a perforated plate," Clean Technol., Vol. 25, pp. 147-152.   DOI
10 Guo, B., Yu, A., and Guo, J., 2015, "Numerical modelling of ESP for design optimization," Procedia Eng., Vol. 102, pp. 1366-1372.   DOI
11 Sahin, B., and Ward-Smith, A. J., 1987, "The use of perforated plates to control the flow emerging from a wide-angle diffuser, with application to electrostatic precipitator design," Int. J. Heat Fluid Flow, Vol. 8(2), pp. 124~131.   DOI
12 Seong, J. M., Han, K. H., Park, H. J., Han, J. H. and Hwang, W. T., 2022, "Experimental analysis of the internal flow in an electrostatic precipitator using magnetic resonance velocimetry," KSME-B, Vol. 46(12) (to be published in 2022.12).
13 Idelchik, I.E., 2008, Handbook of hydraulic resistance, Begell House, New York, pp. 575-616.
14 Ryu, C. K., Shim, K. B. and Choi, S. M., 1999, "Flow optimization study of selective catalytic reactor by reduced scale model experiments and numerical simulations," KSME-B, Vol. 23(4), pp. 548-548
15 McTavish, S., Feszty, D. and Nitzsche, F., 2013, "Evaluating Reynolds number effects in small-scale wind turbine experiments," J. Wind Eng. Ind. Aerodyn., Vol. 120, pp. 81-90   DOI
16 Swaminathan, M. R. and Mahalakshmi, N. V., 2010, "Numerical modelling of flow through perforated plates applied to electrostatic precipitator," J. Appl. Sci., Vol. 10, pp. 2426-2432   DOI
17 Ye, X. L., Su, Y. B., Guo, B. Y., and Yu, A. B., 2016, "Multi-scale simulation of the gas flow through electrostatic precipitators," Appl. Math. Model., Vol. 40, pp. 9514-9526.   DOI
18 Luo, J., and Razinsky, E. H., 2009, "Analysis of turbulent flow in 180 deg turning ducts with and without guide vanes," ASME. J. Turbomach., Vol. 131, pp. 021011.   DOI
19 Liou, T. M., Lee, H. L., and Liao, C. C., 2001, "Effects of guide-vane number in a three-dimensional 60-deg curved side-dump combustor inlet," J. Fluids Eng., Vol. 123(2), pp. 211-218.   DOI