• 제목/요약/키워드: Inlet Baffle

검색결과 53건 처리시간 0.027초

유동분배판에 의한 원통 다관형 열교환기의 성능 특성에 관한 수치해석적 연구(I): 유동특성 (NUMERICAL STUDY ON THE PERFORMANCE CHARACTERISTICS OF SHELL AND TUBE HEAT EXCHANGER BY FLOW DISTRIBUTORS : PART(I) FLOW CHARACTERISTICS)

  • 박영민;정희택;김형범
    • 한국전산유체공학회지
    • /
    • 제19권3호
    • /
    • pp.20-23
    • /
    • 2014
  • The flow pattern inside the inlet chamber of the tube side is one of the key parameters influencing on the performances of the shell-and-tube type of heat exchangers(STHE). In order to improve the flow distribution, the baffle shaped as the porous plate is installed in the inlet chambers. In the present study, numerical simulation has been performed to investigate the flow features of the tube side of the STHE in sense of the hydraulic performances. The flow fields have been analysed by the three-dimensional Navier-Stokes solvers with the proper turbulent models. Computational domain is ranged in the whole of the tube side of the STHE. The numerical results showed that the presence of the baffles improves the redistribution of the flow injecting to the tube bundels. The good agreements of the numerical results with the experimental results of PIV measurements have been shown for the validation of the numerical methods adopted in the present papers.

전산유체역학을 이용한 응집지 분배수로의 흐름 해석에 관한 연구 (Examining Three-Dimensional Flow Characteristics in the Distribution Channel to the Flocculation Basin using CFD)

  • 박노석;백흥기;김정현;민진희;신항식
    • 상하수도학회지
    • /
    • 제18권4호
    • /
    • pp.500-507
    • /
    • 2004
  • This study was conducted to evaluate the equity of the flow distribution from rapid mixing basin to the flocculation basins. Also, several types of inlet structures of the open channel affecting the flow pattern and distribution trend were studied using Computational Fluid Dynamics (CFD) simulation. For investigating the factual phenomena in distribution channel, we selected a certain domestic water treatment plant with capacity of $361,000m^3/d$. From the measurements of flow discharge, it is investigated that this existing inlet geometry resulted in significant inequitable distribution. The both largest deviations in the basins and rows were over 10%. In order to reduce the these deviation, this study suggested installing a baffle against the influent, and showed the effectiveness which the largest deviation was less than 3%. Also, it was concluded that the existing design method of open channel could be improved by three-dimensional hydrodynamic analysis for optimizing the even flow.

Transient CFD 모사기법을 이용한 정수지 최적설계 사례연구 (Case study on Remodeling Clearwell Hydraulic Structure using Transient CFD Simulation Technique)

  • 김선진;김성수;박노석;차민환;왕창근
    • 상하수도학회지
    • /
    • 제24권4호
    • /
    • pp.425-432
    • /
    • 2010
  • From the results of tracer test for the existing clearwell in Y water treatment plant, $T_{10}$ and T10/T were calculated as 150 min and 0.24, respectively. Therefore it required the modification schemes for improving hydraulic efficiency, surrogated by $T_{10}$ and $T_{10}$/T, and disinfection performance. In this study, using transient CFD(Computational Fluid Dynamics) simulation technique, tracer tests on dynamic condition for the suggested schemes were simulated. From the results of simulation, it was revealed that 8~6 baffles are necessary to guarantee the disinfection ability in the existing clearwell. Also, installing orifice baffle in the vicinity of inlet could increase plug flow fraction within clearwell.

승용차 머플러에 유입되는 배기가스의 열전달 해석 (Heat Transfer Analysis of Exhaust Gas into the Passenger Car Muffler)

  • 이중섭;신재호;이해종;서정세;정한식;정효민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.157-162
    • /
    • 2003
  • This study is analysis on the heat transfer of exhaust gas into the muffler at passenger Car. Numerical analysis with Computational fluid Dynamics(CFD) was carried out to investigate exhaust gas flow. The STAR-CD S/W used for the three dimensional steady state CFD analysis in a muffler. The Navier-Stokes Equation is solved with the SIMPLE method in a general cartesian coordinates system. Result of numerical simulation; Inlet and outlet temperature shown about ${\Delta}T=239K$, 216K, 202K at in the muffler. Heat transfer was progressed quickly by atmospheric temperature of muffler external at in the near wall.

  • PDF

고온 태양열 화학 반응기에서의 메탄-수증기 개질반응 시뮬레이션 (Methane-Steam Reforming Simulation for a High Temperature Solar Chemical Reactor)

  • 고요한;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제29권1호
    • /
    • pp.44-49
    • /
    • 2009
  • Steam reforming of methane in the high temperature solar chemical reactor bas advantage in its heating method. Using concentrated solar energy as a heating source of the reforming reaction can reduce the $CO_2$ emission by 20% compared to hydrocarbon fuel. In this paper, the simulation result of methane-steam reforming on a high temperature solar chemical reactor(SCR) using Fluent 6.3.26 is presented. The high temperature SCR is designed for the Inha Dish-1, a Dish type solar concentrator installed in Songdo city. Basic SCR performance factors are referred to the former researches of the same laboratory. Inside the SCR porous metal is used for a receiver/reactor. The porous metal is carved like a dome shape on the incident side to increase the heat transfer. Also, ring-disc set of baffle is inserted in the porous metal region to increase the path length. Numerical and physical models are also used from the former researches. Methane and steam is mixed with the same mole fraction and injected into the SCR. The simulation is performed for a various inlet mass flow rate of the methane-steam mixture gas. The result shows that the average reactor temperature and the conversion rate change appreciably by the inlet mass flow rate of 0.0005 kg/s.

유동분배판에 의한 원통-다관형 열교환기의 성능 특성에 관한 수치해석적 연구(II): 전열특성 (NUMERICAL STUDY ON THE PERFORMANCE CHARACTERISTICS OF SHELL AND TUBE HEAT EXCHANGER BY FLOW DISTRIBUTORS : PART(II) HEAT TRANSFER CHARACTERISTICS)

  • 박영민;이태호;정희택;김형범
    • 한국전산유체공학회지
    • /
    • 제21권4호
    • /
    • pp.28-32
    • /
    • 2016
  • In the previous study, it is proved by numerical simulation that the baffle shaped as the porous plate installed in the inlet chambers improves the redistribution of the flow injecting to the tube bundles. In the present study, numerical simulation has been performed to investigate the effects of the flow distributors on the thermal characteristics of the shell and tube heat exchangers. The flow fields have been analysed by the three-dimensional Navier-Stokes solvers including the thermal conditions on the shell sides. The numerical results showed that the presence of the baffles improves the redistribution of the heat transfer to the tube bundles though the overall performance drop slightly on the present flow conditions.

태양열 화학반응기의 수소전환효율 예측 시뮬레이션 (Simulation of the Hydrogen Conversion Rate Prediction for a Solar Chemical Reactor)

  • 고요한;서태범
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.294-299
    • /
    • 2008
  • Steam reforming of methane is the most wide spread method for hydrogen production. It has heed studied more than 60 years. methane reforming has advantages in technological maturity and economical production cost. Using a high-temperature solar thermal energy is an advanced technology in Steam reforming process. The synthesis gas, the product of the reforming process, can be applied directly for a combined cycle or separated for a hydrogen. In this paper, hydrogen conversion rate of a solar chemical reactor is calculated using commercial CFD program. 2 models are considered. Model-1 is original model which is designed from the former researches. And model-2 is ring-disk set of baffle is inserted to enhance the performance. The solar chemical reactor has 3 inlet nozzle at the bottom of the side wall near quartz glass and an exit is located at the top. Methane and steam is premixed with 50:50 mole fraction and goes into the inside. Passing through the porous media, the reactants are conversed into hydrogen and carbon monoxide.

  • PDF

수직형 순환유동층 열교환기에서의 유체유동과 온도장의 수치해석 (Numerical analysis of fluid flow and thermal fields in the vertical fluidized bed heat exchanger)

  • 이병창;강호근;이명성;안수환
    • 동력기계공학회지
    • /
    • 제16권4호
    • /
    • pp.24-29
    • /
    • 2012
  • The numerical analysis by using CFX 11.0 commercial code was done for prediction of fluid flow and thermal field in the vertical heat exchanger. The present experimental studies were also conducted to investigate the effects of circulating solid particles on the fluid flow and temperatures in the fluidized bed vertical shell and tube type heat exchanger with counterflow, at which the solid particles of glasses (3 $mm{\Phi}$) were used in the fluidized bed with a smooth tube. The effect of circulation on the distance(L) of tube inlet and baffle plate was also examined. The present experimental and numerical results showed that the particles in the distance (Ds) of 15 mm showed a more efficient circulation without stacked the space and the LMTD(Log Mean Temperature Difference) in the fluidized bed type was much lower than that in the typical type shell and tube heat exchanger.

Vortex Cavitation from Baffle Plate and Pump Vibration in a Double-Suction Volute Pump

  • Sato, Toshiyuki;Nagahara, Takahide;Tanaka, Kazuhiro;Fuchiwaki, Masaki;Shimizu, Fumio;Inoue, Akira
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.76-83
    • /
    • 2011
  • This study highlights especially the mechanism of vortex cavitation occurrence from the end of the suction duct in a double-suction volute pump and pump oscillation which causes cavitation noise from the pump. In this study, full 3D numerical simulations have been performed using a commercial code inside the pump from the inlet of suction duct to the outlet of delivery duct. The numerical model is based on a combination of multiphase flow equations with the truncated version of the Rayleigh-Plesset model predicting the complicated growth and collapse process of cavity bubbles. The experimental investigations have also been performed on the cavitating flow with flow visualization to evaluate the numerical results.

컴퓨터에 의한 열교환기 최적설계 (Computer-Aided Optimal Design of Heat Exchangers)

  • 송태호;오진국;윤창현;허경재
    • 대한설비공학회지:설비저널
    • /
    • 제10권4호
    • /
    • pp.297-303
    • /
    • 1981
  • Optimal design of shell and tube heat exchanger system with the working fluids which may condense outside the tubes has been carried out under specified inlet and outlet conditions. Independent variables such as number of parallel series, tube diameter, distribution pitch, tube side pressure loss, baffle cut and shell side pressure loss as well as dependent variables such as shell diameter, number of tubes, number of serial series and number of baffles were all characterized according to the standard. Exhaustive search method was used to construct a computer program together with the calculation of heat transfer rate by LMTD method. stress analysis of maj or parts was made to examine their dimensions satisfying heat transfer and pressure loss requirements. Cost estimation based on the installation, operation and maintenance was also made, A few representative variables, heat transfer area, shell diameter and pressure loss, were used to express cost function, finally giving the optimal selection of all tentative solutions.

  • PDF