• Title/Summary/Keyword: Injector configuration

Search Result 37, Processing Time 0.023 seconds

Recess Effects on Spray Characteristics of Swirl Coaxial Injectors

  • Seol, J.H.;Han, P.G.;Jeong, W.H.;Yoon, Y.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.26-33
    • /
    • 2003
  • Recess is a geometrical configuration shape that the exit surface of an inner injector is located at a certain length inward from that of an outer injector. It is known to have the characteristics that it can augment mixing efficiency and flame stabilization through internal mixing of propellant in it. So, various experiments, such as backlit stroboscopic photography, phase Doppler particle analyzer(PDPA) and mechanical patternator, were performed at several recess lengths to grasp its effect on the spray characteristics of spray angle, breakup length, atomization and' mixing. Recess length was normalized to dimensionless recess number and two principal mechanisms of impingement and swirl recovery were introduced to explain its influence on the spray characteristics. The effect of recess on SMD doesn't appear significantly near the recess number where mixing efficiency attains to the maximum, whereas mass distribution and mixing efficiency are changed considerably. Thus, it can be inferred that a certain optimum recess number exists, where mixing efficiency becomes the maximum.

Spray Characteristics of a Liquid-Liquid Swirl Coaxial Injector Part I : Effect of Injection Condition (액체-액체 스월 동축형 인젝터의 분무특성 Part I : 분사조건에 따른 특성)

  • Kim, Dong-Jun;Im, Ji-Hyuk;Han, Poong-Gyoo;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.1-8
    • /
    • 2006
  • The influences of injection conditions and recess configuration of liquid-liquid swirl coaxial injectors on spray characteristics were investigated. The characteristics of the coaxial spray in internal mixing injection region were mainly controlled by the merging phenomenon and momentum balance between two liquid sheets, but those in internal mixing injection region were influenced by the impingement phenomenon as well as momentum balance between two liquid sheets.

Study on Breakup Characteristics of Gel Propellant Using Pressure Swirl Injector (압력선회형 인젝터를 이용한 젤 추진제의 분열특성 연구)

  • Cho, Janghee;Lee, Donghee;Kim, Sulhee;Lee, Donggeun;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.5
    • /
    • pp.10-17
    • /
    • 2021
  • In this study, cold-flow test of simulant gel is conducted using a pressure swirl injector to identify spray characteristics according to gellant weight percent. Experiment results show the aircore is developed locally at the nozzle and expanded to the entire swirl chamber as the supply pressure increases. The aircore formation of simulant gel showed no significant difference compared to Newtonian fluid. The spray pattern was classified into four distinct shapes where relationship between the breakup regimes and dimensionless numbers were investigated. In the future, additional study is necessary to understand the aircore formation mechanism, stability and spray characteristics at different configuration of the swirl chamber shape.

A Study on the Combustion Performance with Variation of Fuel Injection Hole Configuration at Supersonic Combustion (초음속 연소에서 연료 분사구 형상에 따른 연소성능 변화에 대한 실험적 연구)

  • Lee, Kyung-Jae;Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.19-26
    • /
    • 2011
  • In order to investigate the effect of fuel injection hole configuration within the scramjet combustor, experiment and quasi-one-dimensional analysis was performed. And the results were compared with experiment and analysis result which were performed in 2008 with same facility and test condition. Fuel injection hole size was decreased and quantity was increased. However the depth of fuel penetration and flow quantity of fuel were maintained. As a test result, combustion performance was increased significantly with no-cavity injector and slightly with plain-cavity. However, combustion performance with zigzag-cavity was decreased.

A Study on the Combustion Performance with Variation of Fuel Injection Hole Configuration at Supersonic Combustion (초음속 연소에서 연료 분사구 형상에 따른 연소성능 변화에 대한 실험적 연구)

  • Lee, Kyung-Jae;Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.423-431
    • /
    • 2010
  • In order to investigate the effect of fuel injection hole configuration within the scramjet combustor, experiment and quasi-one-dimensional analysis was performed. And the results were compared with experiment and analysis result which were performed in 2008 with same facility and test condition. Fuel injection hole size was decreased and quantity was increased. However the depth of fuel penetration and fuel flow were maintained. As a test result, combustion performance was increased significantly with no-cavity injector and slightly with plain-cavity. However, combustion performance with zigzag-cavity was decreased.

  • PDF

Configuration Design, Hot-firing Test and Performance Evaluation of 200 N-Class GCH4/LOx Small Rocket Engine (Part I: A Preliminary Design and Test Apparatus) (200 N급 GCH4/LOx 소형로켓엔진의 형상설계와 성능시험평가 (Part I: 예비설계와 시험장치))

  • Kim, Young Jin;Kim, Min Cheol;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In this study, a configuration design of a CH4/LOx small rocket engine was made and test system was established for the performance evaluation. A coaxial swirl injector was chosen because of its remarkable atomization performance and low combustion instability. Three aspect ratios for the combustion chamber configuration, i.e., 1.5, 1.8, and 2.1 were also set for the comparison of the combustion efficiency. The reliability of the thrust measurement rig was enhanced by pre-and post-calibration process. From the preliminary ground hot-firing test, the measured thrust and specific impulse values were 89.2 N and 181.8 s, respectively, which were 21.6% lower than the ideal values. In addition, the efficiency of characteristic velocity was measured as 84.2%.

Enhancement of hybrid rocket fuel regression rate by swirl flow configuration (스월 유동 조건에 따른 하이브리드 로켓 연료의 연소율 향상)

  • Hwang, Young-Chun;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.232-236
    • /
    • 2006
  • 하이브리드 로켓에서 그레인 전체 부분에서 고른 연소율 향상을 이룰 수 있는 방법으로 스월 유동과 나사산 그레인을 동시에 적용하여 실험을 실시하였다. 그 결과 입구부분과 연료 후반부에 집중된 연소현상을 확인하였다. 스월 유동은 스월 유동의 종류에 상관없이 일정한 감소율을 나타낸다. 그리고 연소율 향상은 연료 벽면에서의 회전 유동 강도에 비례한다고 가정 할 수 있다. 따라서 입구부분의 집중된 연소현상을 해소하고 일정한 연소율 향상을 이룰 수 있는 스월 유동 조건에 대해 연구하였다.

  • PDF

Optimization of drag reduction effect of air lubrication for a tanker model

  • Park, Seong Hyeon;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.427-438
    • /
    • 2018
  • The reduction of $CO_2$ emissions has been a key target in the marine industry since the IMO's MEPC published its findings in 2009. Air lubrication method is one of the mature technologies for commercialization to reduce the frictional resistance and enhance fuel efficiency of ships. Air layer is formed by the coalescence of the injected air bubbles beyond a certain air flow rate. In this study, a model ship (${\lambda}=33.33$) of a 50,000 ton medium range tanker is equipped with an air lubrication system. The experiments were conducted in the 100 m long towing tank facility at the Pusan National University. By selecting optimal air injector configuration and distribution ratio between two injectors, the total resistance of model $R_{TM}$ was able to be reduced down to 18.1% in the model scale. Key issue was found to suppress the sideway leakage of injected air by appropriate injection parameters.

A Study on the Combustion and Exhaust Gas Characteristics of Single Cylinder Engine for DME and Diesel (DME와 디젤 단기통 엔진의 연소 및 배출가스 특성에 관한 연구)

  • Kim, Hyun-Chul;Kang, Woo;Kim, Byoung-Soo;Park, Sang-Hoon;Chung, Jae-Woo;Park, Jong-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.80-89
    • /
    • 2004
  • In order to confront the increasing air pollution and the tightening emission restrictions, this research developed a diesel engine using DME, the advanced smoke-free alternative fuel. By numerical analysis, flow field, spray, and combustion phenomenon of the DME engine was presented. Using an experimental method, the configuration of the fuel supply system and operation/power performance was tested with the current plunger pump. Most emission performance, especially smoke performance was significantly improved. The possibility of conversion from the current diesel engine into the DME engine was affirmed in this research. However, it was found that the increase of engine RPM and fuel amount need to be properly adjusted through matching the characteristics of fuel and injector for further improvement.

Effect of Mixture Ratio Variation near Chamber Wall in Liquid Rocket Engine

  • Han, Poong-Gyoo;Kim, Kyoung-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.51-60
    • /
    • 2003
  • An experimental research program is being undertaken to develop a regeneratively-cooled experimental thrust chamber of liquid rocket engine using liquefied natural gas and liquid oxygen as propellants. Prior to firing test using a regenerative cooling with liquefied natural gas in this program, several firing tests were conducted with water as a coolant. Experimental thrust chambers with a thrust of about 10tf were developed and their firing test facility was built up. Injector used in the thrust chamber was of shear-coaxial type appropriate for propellants of gas and liquid phase and cooling channels are of milled rectangular configuration. Periodical variation of the soot deposition and discoloration was observed through an eyes' inspection on the inner wall of a combustion chamber and a nozzle after each firing test, and an intuitive concept of the periodical variation of mixture ratio near the inner wall of a combustion chamber and a nozzle at once was brought about and analyzed quantitatively. Thermal heat flux to the coolant was calculated and modified with the periodical variation model of mixture ratio, and the increment of coolant temperature at cooling channels was compared with measured one.