• Title/Summary/Keyword: Injection-Compression

Search Result 421, Processing Time 0.024 seconds

Investigation of Molding Characteristics in Injection Compression Molding According to Molding Conditions through Birefringence (사출압축성형에서 복굴절을 통한 성형조건에 따른 성형특성 고찰)

  • Lee, Dan Bi;Nam, Yun Hyo;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.193-198
    • /
    • 2014
  • Lens and DVD require high quality of optical property. Conventional injection molded products contain high residual stress and this invokes birefringence since high cavity pressure and high temperature variation are involved in a molding process. Thus these products are often molded by injection compression molding in order to minimize the residual stress through reducing cavity pressure and uniform cavity pressure. In this study, molding parameters affecting molding quality such as property uniformity in injection compression molding were investigated through experiment. Molding quality deviations among the cavities in multi-cavity mold were also studied. Transparent resins, PC and PS were used in this study. Compression gap, compression speed, compression force, and compression delay time for processing variables in injection compression molding were applied in experiment. Compression force, compression delay time, and compression gap significantly affected the optical property of product. The degree of influence of process variable on the product quality was different in different resins. This implies that the optimal operational conditions in injection compression molding existed for each resin according to flow property.

A Study on the Suitable Compression Ratio of Hydrogen Fueled Engine with Dual Injection (이중분사식 수소기관의 적정압축비에 관한 연구)

  • Kim, Y.Y.;Shin, S.W.;Lee, Jong-T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.1001-1007
    • /
    • 2001
  • Hydrogen fueled engine with dual injection can achieve high power and high efficiency simultaneously. In this study, the suitable compression ratio of hydrogen fueled engine with dual injection were investigated including performance of this engine according to variation of compression ratio. As results, it was found that the suitable compression ratio of that was about CR=11, and torque and thermal efficiency increased by 6% and 7% respectively.

  • PDF

Numerical Study on The Injection-Compression Molding Characteristic of High Viscosity Plastic Fluids (고점도 유동장이 사출-압축 성형에 미치는 영향)

  • Park, Gyun-Myoung;Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.18 no.5
    • /
    • pp.345-350
    • /
    • 2002
  • Recently, as the development of manufacturing technique on SMC(sheet molding compound), various numerical and experimental approaches to injection and compression molding have been investigated. Injection and compression molding, however, has so various cases with complicated boundary condition that it is difficult to analyze mold characteristics precisely. In addition, since a slight change in process variables can significantly change the resulting mold thickness, a proper design is important to compression molding process. Therefore, in this study, the effects of various parameters on compression molding process have been investigated using FEM(finite element method) to formulate the melt front advancement during the mold filling process. To verify the results of present analysis, they are compared with those of reference. The results show a strong effect of initial charge volume, injection time and pressure as a result of variations in the rectangular charge shape.

A Study on the Molding Technology for the Preform of Blow Molding Through Compression Molding (압축성형을 통한 블로우 성형품용 프리폼 성형기술 연구)

  • Choi, S.H.;Min, H.K.;Lyu, M.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.3-8
    • /
    • 2007
  • Novel compression molding system for preform has been developed in this study. The preforms for injection blow molding and injection stretch blow molding are being manufactured by injection molding. However it contains gate mark that affects the bottom crack in the PET bottle. The compression molded preform does not contain gate mark, thus the appearance quality of bottle has been increased and the residual stress near gate(bottom of the bottle) has been reduced. The thickness distributions, haze, and transmittance are well accepted for the preform. Also, flow characteristics of the resin between a core and cavity could be analyzed through computer simulation.

Film Insert Molding of Automotive Door Grip Using Injection-Compression Molding (사출압축성형을 이용한 자동차용 도어그립 필름인서트성형)

  • Lee, Ho Sang;Yoo, Young Gil;Kim, Tae An
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.771-777
    • /
    • 2014
  • Injection-compression molding was used for film insert molding of an automotive door grip using films with three-dimensional embossed patterns. A vacuum mold was fabricated for vacuum-assisted thermoforming of the film, and an injection-compression mold was developed for film insert molding. Three pressure transducers were installed inside the mold cavity to measure cavity pressures. Injection-compression molding experiments under various compression strokes and toggle speeds were performed to investigate their effects on the cavity pressure and heights of the embossed patterns. The compression stroke of 0.9mm and low toggle speed resulted in a higher degree of conservation of embossed patterns. Additionally, the processing conditions for the maximum heights of embossed patterns were almost similar to those for minimum integral value of cavity pressures. The injection-compression molding process presents the opportunity to impart a soft-touch feeling of plastic parts printed with embossed patterns.

A study on carbon composite fabrication using injection/compression molding and insert-over molding (사출/압축 공정과 인서트 오버몰딩을 이용한 탄소복합소재 성형에 대한 연구)

  • Jeong, Eui-Chul;Yoon, Kyung-hwan;Hong, Seok-Kwan;Lee, Sang-Yong;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2020
  • In this study, forming of carbon composite parts was performed using an injection/compression molding process. An impregnation of matrix is determined by ability of wet and flow rate between the matrix and reinforcement. The flow rate of matrix passing through the reinforcements is a function of permeability of reinforcement, a viscosity of matrix and pressure gradient on molding, and the viscosity of the matrix depends on the mold temperature, molding pressure and shear strain of matrix. Therefore, compression molding experiment was conducted using a heating mold in order to confirm the possibility of matrix impregnation. The impregnation of the matrix through the porosities between the woven yarns was confirmed by the cross-sectional SEM image of compression molded parts. An injection molding process was also performed at a short cycle time, high molding pressure and low mold temperature than those of compression experiment conditions. Deterioration of impregnation on the surface of molded parts were caused by these injection conditions and it could be the reason of decreasing the maximum tensile strength. In order to improve impregnation of matrix on the surface, injection/compression molding and insert-over molding were applied. As a result of applying injection/compression molding and insert-over molding, it was shown that the improvement of impregnation on the surface and the maximum tensile strength was increased about 2.8 times than the virgin matrix.

Numerical Study on the Effect of Diesel Injection Parameters on Combustion and Emission Characteristics in RCCI Engine (RCCI 엔진의 디젤 분사 파라미터에 따른 연소 및 배출가스 특성에 대한 수치적 연구)

  • Ham, Yun-Young;Min, Sunki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.75-82
    • /
    • 2021
  • Low-temperature combustion (LTC) strategies, such as HCCI (Homogeneous Charge Compression Ignition), PCCI (Premixed Charge Compression Ignition), and RCCI (Reactivity Controlled Compression Ignition), have been developed to effectively reduce NOx and PM while increasing the thermal efficiency of diesel engines. Through numerical analysis, this study examined the effects of the injection timing and two-stage injection ratio of diesel fuel, a highly reactive fuel, on the performance and exhaust gas of RCCI engines using gasoline as the low reactive fuel and diesel as the highly reactive fuel. In the case of two-stage injection, combustion slows down if the first injection timing is too advanced. The combustion temperature decreases, resulting in lower combustion performance and an increase in HC and CO. The injection timing of approximately -60°ATDC is considered the optimal injection timing considering the combustion performance, exhaust gas, and maximum pressure rise rate. When the second injection timing was changed during the two-stage injection, considering the combustion performance, exhaust gas, and the maximum pressure increase rate, it was judged to be optimal around -30°ATDC. In the case of two-stage injection, the optimal result was obtained when the first injection amount was set to approximately 60%. Finally, a two-stage injection rather than a single injection was considered more effective on the combustion performance and exhaust gas.

Numerical Prediction of Process Window for Injection-Compression Molding of 7-inch LGP (수치해석을 통한 7인치 도광판 사출압축성형 공저범위 예측)

  • Hong, S.K.;Min, I.K.;Kang, J.J.;Yoon, K.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.5-10
    • /
    • 2011
  • The main objective of the present study is to predict the process window of injection-compression molding corresponding to the capability of an injection machine for fabricating 7 inch LGP. The open distance and volume filled after injection stage were found to be two important factors that affect critical requirements such as flow length, injection pressure and clamping force for the process. Process window for the key factors was also predicted by response surface method. As a result, predicted process window for open distance and volume filled after injection stage satisfying the critical requirement with a given injection machine was in the range of 60 ~ 75%, and 104.00 ~ 104.25%, respectively.

A Study of Mold Technology for Manufacturing of CFRTP Parts (CFRTP 부품제조를 위한 금형 및 성형 기술에 대한 연구)

  • Jung, Eui-Chul;Kim, Jong-Sun;Son, Jung-Eon;Yoon, Kyung-Hwan;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.25-28
    • /
    • 2017
  • The production of carbon fiber reinforced thermoplastics(CFRTP) parts using an injection/compression molding process that differs from the conventionally used fabrication methods was investigated Before the application of composite molding in the injection/compression molding process, a simple compression molding experiment was performed using a hydraulic press machine to determine the characteristics of resin impregnation and to obtain a basic physical property data for the CFRTP. Based on these results, injection/compression molded specimens were manufactured and an additional insert/over molding process was applied to improve the impregnation rate of the molded specimens. The results demonstrated that the tensile strength of the molded parts using the faster injection/compression process was similar to that of a hydraulic press molded product.

Measurement of Birefringence Distribution in Optical Disk Substrates Fabricated by Injection-Compression Molding (사출압축성형을 통한 광디스크 기판 성형 및 복굴절의 측정)

  • 김종성
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.218-224
    • /
    • 1999
  • It is necessary to improve mechanical and optical properties in the optical disk substrates as the information storage devices with high storage density using short wavelength laser are being developed. Injection compression molding is regarded as the most suitable process to manufacture optical disk substrates with high is regarded as the most suitable process to manufacture optical disk substrates with high dimensional accuracy low residual stresses and superb optical properties In the present study polycarbonate optical disk substrates were fabricated by injection compression molding and the birefringence regarded as one of the most important optical properties for optical disk is measured. The effects of various processing conditions upon the development of birefringence distribution were examined experimentally. It was found that the value of the birefringence distribution were very sensitive to the mold wall temperature history and the variance of the birefringence distribution in the radial direction was affected by the level of the packing and the compression pressure.

  • PDF